1、智猪博弈
假设猪圈里有一头大猪、一头小猪。
猪圈的一头有猪食槽(两猪均在食槽端),另一头安装着控制猪食供应的按钮,按一下按钮会有10个单位的猪食进槽,但是在去往食槽的路上会有两个单位猪食的体能消耗,若大猪先到槽边,大小猪吃到食物的收益比是6:4;同时行动(去按按钮),收益比是7∶3;小猪先到槽边,收益比是9:1。
那么,在两头猪都有智慧的前提下,最终结果是小猪选择等待。
"智猪博弈"由纳什于1950年提出。
实际上小猪选择等待,让大猪去按控制按钮,而自己选择“坐船”(或称为搭便车)的原因很简单:在大猪选择行动的前提下,小猪选择等待的话,小猪可得到4个单位的纯收益,而小猪行动的话,则仅仅可以获得大猪吃剩的1个单位的纯收益,所以等待优于行动。
在大猪选择等待的前提下,小猪如果行动的话,小猪的收入将不抵成本,纯收益为-1单位,如果小猪也选择等待的话,那么小猪的收益为零,成本也为零,总之,等待还是要优于行动。
当大猪选择行动的时候,小猪如果行动,其收益是1,而小猪等待的话,收益是4,所以小猪选择等待;当大猪选择等待的时候,小猪如果行动的话,其收益是-1,而小猪等待的话,收益是0,所以小猪也选择等待。
综合来看,无论大猪是选择行动还是等待,小猪的选择都将是等待,即等待是小猪的占优策略。
2、协同攻击难题
两个将军各带领自己的部队埋伏在相距一定距离的两个山上,等候敌人。将军A得到可靠情报说,敌人刚刚到达,立足未稳。如果敌人没有防备,两股部队一起进攻的话,就能够获得胜利;而如果只有一方进攻的话,进攻方将失败。这是两位将军都知道的。
A遇到了一个难题:如何与将军B协同进攻?那时没有电话之类的通讯工具,只有通过派情报员来传递消息。将军A派遣一个情报员去了将军B那里,告诉将军B:敌人没有防备,两军于黎明一起进攻。
然而可能发生的情况是,情报员失踪或者被敌人抓获。即:将军A虽然派遣情报员向将军B传达“黎明一起进攻”的信息,但他不能确定将军B是否收到他的信息。
事实上,情报员回来了。将军A又陷入了迷茫:将军B怎么知道情报员肯定回来了?将军B如果不能肯定情报员回来的话,他必定不会贸然进攻的。于是将军A又将该情报员派遣到B地。然而,他不能保证这次情报员肯定到了将军B那里……
这就是“协同攻击难题”,它是由格莱斯(J. Gray)于1978年提出。更为糟糕的是,有学者证明,不论这个情报员来回成功地跑多少次,都不能使两个将军一起进攻。
扩展资料
1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统地应用于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰·福布斯·纳什利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,莱因哈德·泽尔腾、约翰·海萨尼的研究也对博弈论发展起到推动作用。今天博弈论已发展成一门较完善的学科。在金融学、证券学、生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
参考资料来源:百度百科-博弈论
请列举几个用“博弈论”在实际生活中分析问题的例子。
1、智猪博弈 假设猪圈里有一头大猪、一头小猪。猪圈的一头有猪食槽(两猪均在食槽端),另一头安装着控制猪食供应的按钮,按一下按钮会有10个单位的猪食进槽,但是在去往食槽的路上会有两个单位猪食的体能消耗,若大猪先到槽边,大小猪吃到食物的收益比是6:4;同时行动(去按按钮),收益比...
请列举几个用“博弈论”在实际生活中分析问题的例子。
搭便车问题是一种发生在公共财上的问题。是指经济中某个体消费的资源超出他的公允份额,或承担的生产成本少于他应承担的公允份额。指一些人需要某种公共财,但事先宣称自己并无需要,在别人付出代价去取得后,他们就可不劳而获的享受成果。是常指宏观经济学中的公共品的消费问题。搭便车行为妨碍市场的自...
生活中的博弈论有那些例子
老虎吃掉毛驴的策略,在“博弈论”中就是所谓的“精炼贝叶斯均衡”。 人们常提到的“上有政策、下有对策”,其实是对管理者与被管理者之间的动态博弈的一种描述,面对上边的政策,下边寻求对策是正常的、必然的。从“博弈论”的角度讲,上边的政策制定必须在考虑到下边可能会有的对策的基础上进行,否则,政策就不会是...
生活中有哪些正和博弈的例子
1. 日常生活中的一切,均可从博弈论的角度得到解释。无论是大规模的国际贸易战,还是个人生活中的小插曲,如突发的疾病,博弈论都能提供视角。2. 人们可能会对用博弈论分析个人生病感到不可思议,但实际上,这是与“自然”这一参与者的一场博弈。自然拥有让人生病或不生病的两种策略,而人类则根据健...
生活中的博弈论有那些例子
生活中的博弈论例子 一、市场竞争中的价格战 在商品市场中,商家经常面临价格竞争的博弈。当一家商店降价促销时,其他商家可能会选择跟进降价以保持竞争力。这种价格竞争实际上是一种博弈过程,每家商店都在权衡如何定价才能吸引顾客,同时考虑竞争对手的反应。在这个过程中,商家需要考虑消费者的购买行为、...
生活中的博弈论有那些例子
在生活中,博弈论的应用无处不在,它以各种形式揭示了决策者之间的交互影响。以下是一些常见的生活博弈论实例:首先,"囚徒困境"展示了合作与背叛的两难选择。两个犯罪嫌疑人面临相似的刑罚,如果他们都保持沉默,将各获轻判;但如果一人坦白另一人抵赖,坦白者将获释,抵赖者则面临重刑。这揭示了信任与...
生活中的博弈论有那些例子
5、胜者为王的博弈 在胜者为王中有才能的、有天赋的或者是机遇好的赢家有强大的动力去参加胜者为王的比赛。高高在上的赢家在比赛中获胜左面的亚军有可能被引诱进入高收益工作的行列。就如同太多的需求者去渔船追逐同一条鱼,市场过于拥挤,最终得到的总收益很小。参考资料来源:百度百科-博弈论 ...
以日常生活中的常见例子,怎么运用博弈论的基本思想指导生活决策的方法...
按常情,A应该支持B呀,结果,A与B处在相对抗的位置。B请A吃饭,诉诉旧情,A一副老大的样子,在以后的工作中,B也来个公事公办,以至于互不沟通,互不理睬,结果是相安无事,尽管AB两个回到了原来的位置,从事技术项目开发主管,但,仍然处在冷战状态。很显然,“负和博弈”在先,“零和博弈”...
博弈论是数学问题吗?生活中的例子请帮忙例举例举!谢了!!!
从理论上讲,博弈论是研究理性的行动者相互作用的形式理论,而实际上正深入到经济学、政治学、社会学等等,被各门社会科学所应用。博弈论是依靠数学模型来进行分析的,可以当做数学问题。在经济学中,“智猪博弈”(Pigs’payoffs)是一个著名博弈论例子 这个例子讲的是:猪圈里有两头猪,一头大猪,一...
根据博弈论,找一些日常生活中的事例说明人质困境。
这个困境便就叫做人质困境。例子:长途汽车上的劫匪众人抢劫,若是众人一哄而上肯定能降伏劫匪,但是问题就在于如何一哄而上,首先联合他人或挺身而出或者是首先报警的人必然受到劫匪的剧烈打击,这是他一个人所承受不了的负担。结果就造成了没人愿意第一个站出来。即人质困境。