已知数列{an}的前n项和为Sn=n2+n求数列{an}的通项公式;若bn=(1/2)an+n,求数列{bn}的前n项和Tn

急求

解:
(1)
a1=S1=1^2+1=2
Sn=n^2+n
Sn-1=(n-1)^2+(n-1)
an=Sn-Sn-1=n^2+n-(n-1)^2-(n-1)=2n
{an}通项公式为an=2n
(2)
bn=(1/2)^an+n=(1/2)^(2n)+n=(1/4)^n+n
Tn=b1+b2+...+bn
=(1/4)^1+(1/4)^2+...+(1/4)^n+(1+2+...+n)
=(1/4)[(1-(1/4)^n]/(1-1/4)+n(n+1)/2
=1/3-(1/3)(1/4)^n+n(n+1)/2
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-06-13
1).Sn=n^2+n,递推,S(n-1)=(n-1)^2+n-1。二式相减,an=n^2-(n-1)^2+1=n^2-(n^2-2n+1)+1=2n-1+1=2n,an=2n。2).bn=(1/2)2n+n=(2/2)n+n=n+n=2n,bn=2n。Tn=Σbn=Σ2n=2Σn=2n(n+1)/2=n(n+1)。
第2个回答  2013-06-13
n=1时 A1=2An=Sn-S(n-1)=2n,Bn=2n,则Tn=n^2+n
第3个回答  2013-06-13
讨论得an=2n. tn=n的平方+n

已知数列{an}的前n项和为Sn=n2+n求数列{an}的通项公式;若bn=(1\/2...
an=Sn-Sn-1=n^2+n-(n-1)^2-(n-1)=2n {an}通项公式为an=2n (2)bn=(1\/2)^an+n=(1\/2)^(2n)+n=(1\/4)^n+n Tn=b1+b2+...+bn =(1\/4)^1+(1\/4)^2+...+(1\/4)^n+(1+2+...+n)=(1\/4)[(1-(1\/4)^n]\/(1-1\/4)+n(n+1)\/2 =1\/3-(1\/3)(1\/4...

已知数列{an}的前n项和为Sn,且Sn=n2+n(1)求数列{an}的通项公式;(2...
(1)当n=1时,a1=S1=2…(2分)当n≥2时,an=Sn-Sn-1=(n2+n)-[(n-1)2-(n-1)]=2n,n=1时,也适合上式.∴an=2n.…(6分)(2)由已知:bn=2n?2n=n?2n+1,∵Tn=1?22+2?23+3?24+…+n?2n+1,①∴2Tn=1?23+2?24+…+(n-1)?2n+1+n?2n+2,②…...

已知数列{an}的前n项和为Sn,且Sn=n2+2n,(1)求数列{an}的通项公式;(2...
(1)∵数列{an}的前n项和为Sn,且Sn=n2+2n,n=1时,a1=S1=3,n≥2时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1,n=1时也成立,∴an=2n+1.(2)bn=1Sn=1n(n+2)=12(1n?1n+2),∴Tn=12[(1?13)+(12?14)+(13?15)+…(1n?2?1n)+(1n?1?1n+...

已知数列{an}的前n项和为Sn,且Sn=n2+2n.数列{bn}中,b1=1,bn=abn?1...
(1)n=1时,a1=S1=3,n≥2时,an=Sn-Sn-1=(n2+2n)-(n-1)2-2(n-1)=2n+1,且n=1时也适合此式,故数列{an}的通项公式是an=2n+1;(2)依题意,n≥2时,bn=abn?1=2bn?1+1,∴bn+1=2(bn-1+1),又b1+1=2,∴{bn+1}是以2为首项,2为公比的等比数列,即...

已知数列{an}的前n项和为Sn,且Sn=n2+2n.(Ⅰ)求数列{an}的通项公式...
(Ⅰ)∵Sn=n2+2n,∴当n≥2时,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1,当n=1时,a1=3,也符合上式,∴an=2n+1;(Ⅱ)由题意知bn=2bn-1+1,∴bn+1=2(bn-1+1)(n≥2),∴bn+1bn?1+1=2∵b1+1=2,∴{bn+1}是2为首项,2为公比的等比数列,∴bn+1...

已知数列{an}的前n项和Sn=n2+n2,n∈N*.(1)求数列{an}的通项公式; (2...
(1)解:当n=1时,a1=S1=1,当n≥2时,an=Sn-Sn-1=n2+n2?(n?1)2+n?12=n,n=1时也适合.所以an=n(2)由(1)bn=2n+n(-1)n,数列{bn}的前2n项和T2n=21+22+…22n+[(-1+2)+(-3+4)+…+(-(2n-1)+2n]=1?22n1?2+n=4n+n-1 ...

已知数列{an}的前n项和Sn=n2+2n+1(n∈N*),(1)求数列{an}的通项公式...
(1)∵Sn=n2+2n+1,∴当n≥2时,an=Sn-Sn-1=n2+2n+1-[(n-1)2+2(n-1)+1]=2n+1,当n=1时,a1═S1=1+2+1=4,数列{an}的通项公式an=4,n=12n+1,n≥2;(2)令bn=1anan+1,则b1=1a1a2=14×5,当n≥2时,求bn=1anan+1=1(2n+1)(2n+3)=12(12n+1?12n...

已知数列{an}的前n项和Sn=n2+2n.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若等 ...
(I)a1=S1=3当n≥2时,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+14,符合(II)设等比数列的公比为q,则b2=3,b4=5+7=12所以b1q=3b1q3=12解得b1=32q=2或b1=?32q=?2所以Tn=32(1?2n)1?2或Tn=?32[1?(?2)n]1?(?2)即Tn=3<\/ ...

已知数列{an}的前n项和为Sn,且Sn=2an-n(n∈N+).(1)求数列{an}的通项...
∵Sn=2an-n ①当n≥2时,Sn-1=2an-1-(n-1) ②②-①得an=2an-1+1,∴an+1=2(an-1+1)又∵a1=2a1-1,∴a1=1∴数列{an+1}是以2为首项,2为公比的等比数列,∴an+1=2n∴an=2n-1由于a1=1也适合上式,∴an=2n-1(n∈N+)(2)∵点P(bn,bn+1)在直线x-y+...

已知数列{an}的前n项和为Sn,且Sn=n的二次方+2n(1)求{an}的通项公式(2...
因此,数列的通项公式为 $a_n = n+3$。2.首先,我们需要计算数列 {an} 的通项公式,这里我们可以使用与上题类似的方法:a_n = S_n - S_{n-1} = n^2 + 2n - (n-1)^2 - 2(n-1) = 2n - 1an=Sn−Sn−1=n2+2n−(n−1)2−2(n−...

相似回答