解方程:1. x\/x+1-1=3\/(x+1)(x-2) 2. 3\/x+2+1\/x=4\/x²+2x 3. 2\/3...
因为第一步我们把等式两边同时乘以(x+1)(x-2),而且他们是式子中的分母,所以不能为0 当x = -1 时,x+1 = 0,所以 x = -1舍去,原方程无解。2解:3\/(x+2)+1\/x=4\/(x²+2x)3\/(x+2)+1\/x=4\/x(x+2) 分解因式 3x+x+2=4 去分母 4x=2 移项、合并同类项 ...
解方程:1\\x(x+1)+1\\(x+1)(x+2)+...+1\/(x+8)(x+9)=2x+3\\x(x+9)_百度...
即1\/x-1\/(x+9)=(2x+3)\/x(x+9)即(x+9-x)\/x(x+9)=(2x+3)\/x(x+9)即9=2x+3 即2x=6 解得x=3.
解方程(1)1\/x-3+1\/x+3=4\/x2-9 (2)4\/x2-2x+1\/x=2\/x-2
所以x+2=2x, x=2。但x=2时,分母=0,所以方程无解。(3)方程左边=(x-3-4+x)\/(4-x)=(2x-7)\/(4-x)所以2x-7=-1。x=3。x不等于4,所以成立。(4)方程左边=(1+1-x)\/(1-x^2)方程右边=(3+3x)\/(1-x^2)2-x=3+3x, x=-1\/4。x不等于1或-1,所以成立。
解方程1\/x(x+1)+1\/(x+1)(x+2)+...+1\/(x+8)(x+9)=2x+3\/x(x+9)
=1\/x - 1\/x+9 =9\/x(x+9) = 2x+3\/x(x+9)所以9 = 2x+3 x=3
解方程:1\/x+1\/x(x+1)+1\/(x+1)(x+2)+1\/(x+2)(x+3)+……+1\/(x+9)(x...
1\/x+1\/x-1\/(x+1)+1\/(x+1)-1\/(x+2)+.+1\/(x+9)-1\/(x+10)=0 2\/x-1\/(x+10)=0 2(x+10)-x=0 x=-20
解方程:1\/x(x+1)+1\/(x+1)(x+2)+1\/(x+2)(x+3)+...+1\/(x+9)(x+10)=5...
1\/x(x+1)+1\/(x+1)(x+2)+1\/(x+2)(x+3)+...+1\/(x+9)(x+10)=5\/12 1\/x-1\/(x+1)+1\/(x+1)-1\/(x+2)+1\/(x+2)-1\/(x+3)+...+1\/(x+9)-1\/(x+10)=5\/12 1\/x-1\/(x+10)=5\/12 10\/x(x+10)=5\/12 所以x²+10x-24=0 (x+12)(x-2)=0 x=...
解方程:1\/(x-4)(x-3)+1\/(x-3)(x-2)+1\/(x-2)(x-1)+1\/(x-1)x+x(x+1...
左 =1\/(x-4)-1\/(x-3)+1\/(x-3)-1\/(x-2)+1\/(x-2)-1\/(x-1)+1\/(x-1)-1\/(x)+1\/(x)-1\/(x+1)=1\/(x-4)-1\/(x+1)=右 =1\/(x+1)则 1\/(x-4)=2\/(x+1)2x-8=x+1 x=9 解得,x=9
解方程1\/x(x+1)+1\/(x+1)(x+2)+...+1\/(x+8)(x+9)=2x+3\/x(x+9)?
1\/x(x+1)+1\/(x+1)(x+2)+...+1\/(x+8)(x+9)=(1\/x - 1\/x+1) + (1\/x+1 - 1\/x+2) + ...+ (1\/x+8 - 1\/x+9)=1\/x - 1\/x+9 =9\/x(x+9)= 2x+3\/x(x+9)所以9 = 2x+3 ,2,
解方程:1\/[x(x+1)]+1\/(x+1)(x+2)+1\/(x+2)(x+3)+...+1\/(x+9)(x+10...
1\/x-1\/(x+10)=5\/12;12(x+10)-12x=5x(x+10);120=5x²+50x;x²+10x-24=0;(x+12)(x-2)=0;x=2或x=-12;您好,很高兴为您解答,skyhunter002为您答疑解惑 如果本题有什么不明白可以追问,如果满意记得采纳 如果有其他问题请采纳本题后另发点击向我求助,答题不易,请...
解方程:1\/(x+1)(x+2)+1\/(x+3)(x+4)+……+1\/(x+2010)(x+2011)=(2x+401...
∵1\/(x+1)(x+2)=1\/(x+1)-1\/(x+2)∴1\/(x+1)(x+2)+1\/(x+3)(x+4)+……+1\/(x+2010)(x+2011)=1\/(x+1)-1\/(x+2)+1\/(x+3)-1\/(x+4)+...+1\/(x+2010)-1\/(x+2011)=1\/(x+1)-1\/(x+2011)=(2x+4019)\/(3x+6033)∴1\/(x+1)=(2x+4019)\/(3x+6033...