自然底数e是如何得到的?它有什么奇特之处吗?

如题所述

当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e的值就是通过这个极限而发现的。它是个无限不循环小数。其值约等于2.718281828... 它用e表示,以e为底数的对数通常用于㏑,而且e还是一个超越数。
e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。
涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星……
螺线特别是对数螺线的美学意义可以用指数的形式来表达:ρ=αe^φk其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限不循环数。

参考资料:http://baike.baidu.com/view/36492.htm

温馨提示:内容为网友见解,仅供参考
无其他回答

自然底数e是如何得到的?它有什么奇特之处吗?
e是自然对数的底,也叫欧拉常数,也叫纳皮尔常数。最初纳皮尔发现对数的时候,用的其实是以1\/e为底的对数。首先把e看作是个常数的是雅各布·伯努利,他尝试计算n-∞时(1+1\/n)^n的极限。首先采用e这个符号的是欧拉。以下是e的一些奇特之处:e有这样神奇的连分数表示:e还可以写成这种形式:曲线...

自然底数e是如何得到的?它有什么奇特之处吗?
e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋...

谁知道自然底数e是怎么来的?
数e的某些性质使得它作为对数系统的底时有特殊的便利。以e为底的对数称为自然对数。用不标出底的记号ln来表示它;在理论的研究中,总是用自然对数。历史上误称自然对数为纳皮尔对数,取名于对数的发明者——苏格兰数学家纳皮尔(J.Napier A.D.16-17)。纳皮尔本人并不曾有过对数系统的底的概念,但...

自然数e是如何来的?
e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。这里的e是一个数的代表符号,而我们要说的,便是e的故事。这倒叫人有点好奇了,要能说成一本书,这个数应该大有来头才是,至少应该很有名吧?但是搜索枯肠...

自然底数e是如何得到的?
e是一个客观存在的很神奇很美妙的,又具有很多功能的常数,e在科学技术中用得非常多,一般不使用以10为底数的对数.用它是最“自然”的,所以叫“自然对数”.而自然底数e的意义正是在于它被使用地广泛,以e为底数,许多式子都能得到简化.但是能够这么做的前提是,要有一张对数表.

为什么自然对数底数是e?
e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔引进对数。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。e的数值约为(小数点后100位):“e ≈ 2.71828 18284 59045 23536 02874 71352 ...

自然底数e是如何得到的?
而对数函数logax的求导中也同样出现了这个极限,1\/xloge(a),只是这时e成为了底数。为了书写便利就将以e为底的对数写成ln。众所周知,幂函数和对数函数在科学工程中的应用极为广泛,而他们的导数中都不约而同 自然而然的出现了同一个极限e。自然对数这个名字似乎就再恰当不过了。‍‍...

e为什么叫做自然底数,自然界里什么东西恰好是e?
大致结论是,“自然”一词在此可能包含两层意思,一是这个底数与自然哲学有渊源(比如天体运动中的计算),二是它特指一种定义的对数。特别地,很难说这里面包含了用e作底数是自然而然或者最优美的那样的意思——至少不会是初衷。自然底数及其常用记号e形成于17世纪到18世纪,在Leonhard Euler以后逐渐...

自然底数e的定义自然底数e等于多少
1、e是自然对数的底数,是一个无限不循环小数,其值是2.71828……。对于数列{(1+1\/n )^n},当n趋于正无穷时该数列所取得的极限就是e,即e =lim(1+1\/n)^n。通过二项式展开,取其部分和,可得e的近似计算式e=1+1+1\/2!+1\/3!+1\/4!+ ...+ 1\/n!,n越大,越接近的真值。2、数...

自然底数e的来源
数e的某些性质使得它作为对数系统的底时有特殊的便利。以e为底的对数称为自然对数。用不标出底的记号ln来表示它;在理论的研究中,总是用自然对数。对数的底数 对数中最常用的底数是10、2和e。为什么要以10为底数?因为我们使用10进制,数量级和科学计数法也是10的倍数。所以10x的逆运算,以10为底...

相似回答
大家正在搜