你会解方程x/(x-1) -(x-1)/(x-2) =(x-3)/(x-4) -(x-4)/(x-5)吗

如题所述

x/(x-1) -(x-1)/(x-2) =(x-3)/(x-4) -(x-4)/(x-5)
[1+1/(x-1)]-[1+1/(x-2)]=[1+1/(x-4)]-[1+1/(x-5)]
1/(x-1)-1/(x-2)=1/(x-4)-1/(x-5)
1/(x-1)+1/(x-5)=1/(x-4)+1/(x-2)
[(x-1)+(x-5)]/[(x-1)(x-5)]=[(x-2)+(x-4)]/[(x-2)(x-4)]
(2x-6)/(x^2-6x+5)=(2x-6)/(x^2-6x+8)
2x-6=0或x^2-6x+5=x^2-6x+8
x=3
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-03-24
x/(x-1) -(x-1)/(x-2) =(x-3)/(x-4) -(x-4)/(x-5)
化简,得
1/(x-1) -1/(x-2) =1/(x-4) -1/(x-5)
-1/(x-1)(x-2) =-1/(x-4) (x-5)
(x-1)(x-2) =(x-4) (x-5)
x²-3x+2=x²-9x+20
6x=18
x=3
经检验x=3是方程的根。
第2个回答  2013-03-24
[X(X-2)-(X-1)(x-1)](x-4)(x-5)-[(x-3)(x-5)-(X-4)(X-4)](X-1)(X-2)=0
(x-4)(x-5)-(X-1)(X-2)=0
-9X+20+3X-2=0
6X=18
X=3

Warning: Invalid argument supplied for foreach() in /www/wwwroot/aolonic.com/skin/templets/default/contents.html on line 45
相似回答
大家正在搜