各位,求过程…求函数y=2cosxsin(x+兀/3)-根号3sin^2x+sinxcosx的周期、单调区间及最值。

如题所述

y=2cosxsin(x+π/3)-√3sin²x+sinxcosx
y=2cosxsin(x+π/3)-2sinx[(√3/2)sinx-(1/2)cosx)]
y=2cosxsin(x+π/3)+2sinxcos(x+π/3)]
y=2sin(2x+π/3)

函数周期是2π/2=π
最大值是2,最小值是-2
递增区间是:2kπ-π/2≤2x+π/3≤2kπ+π/2
即:kπ-5π/12≤x≤kπ+π/12
增区间是:[kπ-5π/12,kπ+π/12],其中k∈Z
递减区间是:2kπ+π/2≤2x+π/3≤2kπ+3π/2
得减区间是:[kπ+π/12,kπ+7π/12],其中k∈Z
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-04-10
解:
y=2cosxsin(x+π/3)-√3sin^2x+sinxcosx
=2cosx(sinx*1/2+cosx*√3/2)-√3sin²x+sinxcosx
=cosxsinx+√3cos²x-√3sin²x+sinxcosx
=2sinxcosx+√3(cosx²-sin²x)
=sin2x+√3cos2x
=2sin(2x+π/3)
(1)周期为T=2π/2=π
(2)
∵sinx在x∈[2kπ-π/2,2kπ+π/2]上单调递增
令2kπ-π/2≤2x+π/3≤2kπ+π/2
解得 kπ-5π/12≤x≤kπ+π/12
∴sin(2x+π/3)在x∈[kπ-5π/12,kπ+π/12]上单调递增
同理根据sinx在x∈[2kπ+π/2,2kπ+3π/2]上单调递减,得
sin(2x+π/3)在x∈[kπ+π/12,kπ+7π/12]上单调递减
因此y=2cosxsin(x+π/3)-√3sin^2x+sinxcosx的:
单调递增区间为:[kπ-5π/12,kπ+π/12] (k∈Z)
单调递减区间为:[kπ+π/12,kπ+7π/12] (k∈Z)
(3)
当sin(2x+π/3)=1时,有最大值2
当sin(2x+π/3)=-1时,有最小值-2

很高兴为您解答,满意请采纳,不明白请追问,祝学习进步O(∩_∩)O~~

...+兀\/3)-根号3sin^2x+sinxcosx的周期、单调区间及最值。
y=2sin(2x+π\/3)函数周期是2π\/2=π 最大值是2,最小值是-2 递增区间是:2kπ-π\/2≤2x+π\/3≤2kπ+π\/2 即:kπ-5π\/12≤x≤kπ+π\/12 增区间是:[kπ-5π\/12,kπ+π\/12],其中k∈Z 递减区间是:2kπ+π\/2≤2x+π\/3≤2kπ+3π\/2 得减区间是:[kπ+...

已知函数fx=2cosxsin(x+pai\/3)-根号3sin^2x+sinxcosx,振幅,周期
=2sinxcosx+√3[(cosx)^2-(sinx)^2]=sin2x+√3cos2x =2sin(2x+π\/3),它的振幅=2,周期=π,初相=π\/3,增区间由(2k-1\/2)π<2x+π\/3<(2k+1\/2)π,k∈Z确定,各减去π\/3,得(2k-5\/6)π<2x<(2k+1\/6)π,各除以2,得(k-5\/12)π<x<(k+1\/12)π.减区间是[(k+1...

已知函数fx=2cosxsin(x+π\/3)-√3sin^2x+sinxcosx 1.写出函数fx的一个...
=2sinxcosx +√3cos2x =sin2x+√3cos2x =2(1\/2sin2x+√3\/2cos2x)=2sin(x+π\/3)所以T=π 2.fx=2sin(x+π\/3)因为x∈[0,π\/4]所以x+π\/3∈[π\/3,7π\/12]所以sin(x+π\/3)∈[√3\/2,1]所以fx=2sin(x+π\/3)∈[√3,2]1\/2不属于)[√3,2]所以不存在x使得fx=...

【数学】已知函数f(x)=2cosxsin(x+π\/3)-√3sin^2(x)+sinxcosx
=sinxcosx+√3cos^2 x-√3sin^2 x+sinxcosx =2sinxcox+√3(cos^2 x-sin^2 x)=sin2x+√3cos2x =2sin[2x+(π\/3)]所以:①最小正周期T=2π\/2=π ②最大值=2,最小值=-2 ③递增区间为2x+(π\/3)∈[2kπ-(π\/2),2kπ+(π\/2)]===> 2x∈[2kπ-(5π\/6),2kπ+(...

已知函数f(x)=2cosx*sin(x+π\/3)-√3sin^2x+sinx*...
2sinx*[sin(π\/3)sinx-cos(π\/3)cosx)]= 2cosx*sin(x+π\/3)+ 2sinxcos(x+π\/3)= 2sin(2x+π\/3)f(x)的单调区间2kπ - π\/2 2sin[2(x-m)+π\/3]= 2sin{[2(x+m)-π\/3]}=>2(x-m)+ π\/3 + 2kπ = 2(x+m)-π\/3=>4m= 2π\/3 + 2kπ m=π\/6 取最小...

f(x)等于2cosxsin(x-三分之派)加根号三sin平方x加sinxcosx
f(x)=2cosxsin(x+π\/3)-√3sin^2x+sinxcosx=2cosx(1\/2*sinx+√3\/2*cosx) -√3sin^2x+sinxcosx= sinxcosx+√3cos^2x-√3sin^2x+sinxcosx=2 sinxcosx+√3(cos^2x-sin^2x)=sin2x+√3 cos2x=2 sin(2x+π\/3)值域为[-2,2]同学你好,如果问题已解决,记得右上角采纳哦~~~您的...

已知函数f(x)=2cosxsin(x+π\/3)-^3sin2x+sinxcosx
解:f(x)=2cosxsin(x+ π3)- 3(sinx)2+sinxcosx=2cosx(sin x2+ 3cos x2)- 31-cos2x2+ 12sin2x =sinxcosx+ 31-cosx2- 32+ 3cos2x2+ sin2x2 =sin2x+ 3cos2x =2sin(2x+ π3)

已知函数f(x)=2cosx*sin(x+π\/3)-根号3sin^x+sinxcosx 1.求函数f...
=2sinxcosx+√3(cos²x-sin²x)=sin2x+√3cos2x =2(1\/2*sin2x+√3\/2*cos2x)=2sin(2x+π\/3)(1)令2kπ+π\/2≤2x+π\/3≤2kπ+3π\/2 解得:kπ+π\/12≤x≤2kπ+7π\/12 所以f(x)的单调递减区间集合为[kπ+π\/12,2kπ+7π\/12] (k∈Z)(2)f(x-m)=...

...函数f(x)=2cosxsin(x+π\/3)-根号3sin^2x+sinxcosx,求方程f(x)=x\/...
=2sin(2x+π\/3)=x\/50π,<==>sin(2x+π\/3)=x\/100π,由于|sin(2x+π\/3)|<=1,所以只需考虑|x|<=100π,即-100π<=x<=100π.200π是sin(2x+π\/3)的200个周期,画示意图知,y=sin(2x+π\/3)最右边的一个周期的图像与直线y=x\/100π只有1个交点,其他199个周期的图像与直线y=...

f(x)=2cosxsin(x+π\/3)-√3\/2的最小正周期,化简过程。。
f(x)=[sin(2x+π\/3)+sin(π\/3)]-√3\/2 =sin(2x+π\/3)则最小正周期是π。

相似回答
大家正在搜