数学简便计算,有哪几种方法

如题所述

数学简便计算方法:

一、运用乘法分配律简便计算

简便计算中最常用的方法是乘法分配律。乘法分配律指的是:

ax(b+c)=axb+axc

cx(a-b)=axc-bxc

例1:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。

38X101

=38X(100+1)

=38X100+38X1

=3800+38

=3838

例2:47X98,这样该怎么拆呢?要拆98,使它更接近100。

47X98

=47X(100-2)

=47X100-47X2

=4700-94

=4606

二、基准数法

在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法结合律法

对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、拆分法

顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

五、提取公因式法

这个方法实际上是运用了乘法分配律,将相同因数提取出来。

例:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

温馨提示:内容为网友见解,仅供参考
第1个回答  2013-04-12
一、基础性训练

从小学生不同的年龄心理特点上看,口算的基础要求不同。低中年级主要在一二位数的加法。高年级把一 位数乘两位数的口算作为基础训练效果较好。具体口算要求是,先将一位数与两位数的十位上的数相乘,得到 的三位数立即加上一位数与两位数的个位上的数相乘的积,迅速说出结果。这项口算训练,有数的空间概念的 练习,也有数位的比较,又有记忆训练,在小学阶段可以说是一项数的抽象思维的升华训练,对于促进思维及 智力的发展是很有益的。这项练习可以安排在两段的时间里进行。一是早读课,一是在家庭作业的最后安排一 组。每组是这样划分的:一位数任选一个,对应两位数中个位或十位都含有某一个数的。每组有18道,让学生 先写出算式,口算几遍后再直接写出得数。这样持续一段时间后(一般为2~3个月),其口算的速度、正确率 也就大大提高了。

二、针对性训练

小学高年级数的主体形式已从整数转到了分数。在数的运算中,异分母分数加法是学生费时多又最容易出 差错的地方,也是教与学的重点与难点。这个重点和难点如何攻破呢?经研究比较和教学实践证明,把分数运 算的口算有针对地放在异分母分数加法上是正确的。通过分析归纳,异分母分数加(减)法只有三种情况,每 种情况中都有它的口算规律,学生只要掌握了,问题就迎刃而解了。

1.两个分数,分母中大数是小数倍数的。

如“1/12+1/3”,这种情况,口算相对容易些,方法是:大的分母就是两个分母的公分母,只要把小的分 母扩大倍数,直到与大数相同为止,分母扩大几倍,分子也扩大相同的倍数,即可按同分母分数相加进行口算:1/12+1/3=1/12+4/12=5/12

2.两个分数,分母是互质数的。这种情况从形式上看较难,学生也是最感头痛的,但完全可以化难为易: 它通分后公分母就是两个分母的积,分子是每个分数的分子与另一个分母的积的和(如果是减法就是这两个积的差),如2/7+3/13,口算过程是:公分母是7×13=91,分子是26(2×13)+21(7×3)=47,结果是47/91。

如果两个分数的分子都是1,则口算更快。如“1/7+1/9”,公分母是两个分母的积(63),分子是两个分母 的和(16)。

3.两个分数,两个分母既不是互质数,大数又不是小数的倍数的情况。这种情况通常用短除法来求得公分 母,其实也可以在式子中直接口算通分,迅速得出结果。可用分母中大数扩大倍数的方法来求得公分母。具体 方法是:把大的分母(大数)一倍一倍地扩大,直到是另一个分母小数的倍数为止。如1/8+3/10把大数10,2 倍、3倍、4倍地扩大,每扩大一次就与小数8比较一下,看是否是8的倍数了,当扩大到4倍是40时,是8的倍数 (5倍),则公分母是40,分子就分别扩大相应的倍数后再相加(5+12=17),得数为17/40。

以上三种情况在带分数加减法中口算方法同样适用。

三、记忆性训练

高年级计算内容具有广泛性、全面性、综合性。一些常见的运算在现实生活中也经常遇到,这些运算有的 无特定的口算规律,必须通过强化记忆训练来解决。主要内容有:

1.在自然数中10~24每个数的平方结果;

2.圆周率近似值3.14与一位数的积及与12、15、16、25几个常见数的积;

3.分母是2、4、5、8、10、16、20、25的最简分数的小数值,也就是这些分数与小数的互化。

以上这些数的结果不管是平时作业,还是现实生活,使用的频率很高,熟练掌握、牢记后,就能转化为能 力,在计算时产生高的效率。

四、规律性的训练

1.运算定律的熟练掌握。这方面的内容主要有“五大定律”:加法的交换律、结合律;乘法的交换律、结 合律、分配律。其中乘法分配律用途广形式多,有正用与反用两方面内容,有整数、小数、分数的形式出现。 在带分数与整数相乘时,学生往往忽略了乘法分配律的应用使计算复杂化。如2000/16×8,用了乘法分配律可 以直接口算出结果是1001.5,用化假分数的一般方法计算则耗时多且容易错。此外还有减法运算性质和商不变 性质的运用等。

2.规律性训练。主要是个位上的数是5的两位数的平方结果的口算方法(方法略)。

3.掌握一些特例。如较常遇见的在分数减法中,通分后分子部分不够减,往往减数的分子比被减数的分子 大1、2、3等较小的数时,不管分母有多大,均可以直接口算。如12/7-6/7它的分子只相差1,它差的分子一定 比分母少1,结果不用计算是6/7。又如:194/99-97/99,分子部分相差2,它差的分子就比分母少2,结果就是 97/99。减数的分子比被减数的分子大3、4、5等较小的数时,都可以迅速口算出结果。又如任意两位数与1.5积 的口算,就是两位数再加上它的一半。

五、综合性训练

1.以上几种情况的综合出现;

2.整数、小数、分数的综合出现;

3.四则混合的运算顺序综合训练。

综合性训练有利于判断能力、反应速度的提高和口算方法的巩固。

当然,以上这些情况,要使学生熟练掌握,老师首先要娴熟运用自如,指导时才能得心应手,提高效果。 同时训练应持之以恒,三天打渔两天晒网,是难以收到预期效果的。
第2个回答  2013-04-12
一、整体简便计算。整个一道算式可以用简便方法计算,这种形式最为常见。例如:
  =1.14×10
  =11.4
二、局部简便计算。一道算式中局部可以进行简便计算,这种形式也不少见。
三、中途简便计算。开始计算并不能简便计算,而经过一两步后却能进行简便计算,这种情况最容易忽视。例如:
  =1.2×(1+5+4)
  =1.2×10
  =12
四、重复简便计算。在一道题里不止一次地进行简便计算,这种情况往往不注意后一次简便计算。例如:
  =8×55×0.125
  =8×0.125×55 第二次
  =1×55
  =55本回答被网友采纳
第3个回答  2020-06-15
数学简便计算方法:
一、运用乘法分配律简便计算
简便计算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,这样该怎么拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
第4个回答  2020-04-29

简便计算是采用数学计算中的拆分凑整思想,通过四则运算规律,从而简化计算的方法。

就像68+77=?

大多数人不一定立刻能算出结果,

如果换成70+75=?

相信每一个人都可以一口算出和是145。

这里其实就是把77拆分成2+75,

  68+77

=68+2+75

=70+75

=145

遇见复杂的计算式时,

先观察有没有可能凑整,

凑成整十整百之后再进行计算,

不仅简便,而且避免计算出错。

①加减凑整,G老师讲奥数(微)

【例题1】999+99+29+9+4=?

题中999,99,29,9这四个数字与整数1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把这4个1补到999,99,29,9上,原式就可以简化成:

  999+99+29+9+4

=999+99+29+9+1+1+1+1

=999+1+99+1+29+1+9+1

=1000+100+30+10

=1140

【例题2】5999+499+299+19=?

看完例1,再来看看例2,还是末位都是9,自然要用我们的凑整法了,不过稍有不同,因为例2中没有4来拆分成1+1+1+1。

没有枪没有炮,自己去创造!

先把它加上1+1+1+1,然后再减去4,不就相当于式子加了一个0吗?

  5999+499+299+19

=5999+1+499+1+299+1+19+1-4

=6000+500+300+20-4

=6816

②分组凑整,G老师讲奥数(微)

在只有加减法的计算题中,将算式中的各项重新分下组凑整,也可以使计算非常方便。

【例题3】100-95+92-89+86-83+80-77=?

题目中的两位数加减混合运算,硬算是非常费劲的,但是似乎又不能拆分凑整,再观察题目可以发现从第2个数95起,后面的数都比前一个小3。

根据加法减法运算性质,我们给相邻的项加上括号。

  100-95+92-89+86-83+80-77

=(100-95)+(92-89)+(86-83)+(80-77)

=5+3+3+3

=14

凑整法不仅可以用在加减计算中,乘除加减混合运算也常常会考到。

③提取公因数法,G老师讲奥数(微)

这就需要用到乘法分配律提取公因数,

又称为提取公因数法。

如果没有公因数,我们可以采取乘法结合律变化出公因数。

a×b=(a×10)×(b÷10),

a×b÷c=a÷c×b,

a×b×c=a×(b×c)。

【例题4】47.9x6.6+529x0.34=?

很明显题目中的6.6+3.4=10,我们想办法凑出一个3.4,这就用到了a×b=(a×10)×(b÷10)。但是即使10凑出来,仍然不能提取公因数来简便计算,这就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,创造出一个47.9,方便我们提取公因数。

  47.9x6.6+529x0.34

=47.9x6.6+529÷10x10x0.34

=47.9x6.6+(47.9+5)x3.4

=47.9x(6.6+3.4)+17

=496

简便计算的考察重点在于四则运算规律的灵活运用,方法掌握的基础上,对于四则运算规律必须牢记在心,才能更好地理解运用。

怎样进行简便计算?
5、拆分法:把一个数拆成几个数相加或相减,再计算乘法或除法。6、凑整法:把几个数相加或相减,凑成整十或整百的数,再计算乘法或除法。7、移位置法:带号搬家,移位置时要连同数字前面的符号一起移动。简便计算的好处主要体现在以下几个方面:1、提高计算速度:简便计算方法可以大大简化计算过程...

数学怎样简便算?
六年级上册数学数学简便主要有六大方法:1.“凑整巧算”——运用加法的交换律、结合律进行计算。2.运用乘法的交换律、结合律进行简算。3.运用减法的性质进行简算,同时注意逆进行。4.运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。5.运用乘法分配律进行简算。6.混合运算(...

小学数学简便运算的方法和技巧
1、凑整法:这种方法是最基本的简便运算,通过将其他数字转化成与某个数字相加或相减,达到快速计算的目的。2、分解法:这种方法是将一个数分解成几个数相加或相减,然后再用结合法进行简便运算。3、结合法:这种方法是在将数字分解的基础上,将可以凑整的数字放在一起,然后相加或相减,达到简化计算的...

数学简便计算方法讲解
运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。运用乘法分配律进行简算。混合运算(根据混合运算的法则)。具体解释:一、“凑整巧算”——运用加法的交换律、结合律进行计算。凑整,特别是“凑十”、“凑百”、“凑千”等,是加减法速算的重要方法。加法交换律 定义:两...

数学简便计算,有哪几种方法
一、整体简便计算。整个一道算式可以用简便方法计算,这种形式最为常见。例如:=1.14×10 =11.4 二、局部简便计算。一道算式中局部可以进行简便计算,这种形式也不少见。三、中途简便计算。开始计算并不能简便计算,而经过一两步后却能进行简便计算,这种情况最容易忽视。例如:=1.2×(1+5+4)=1...

数学简便计算方法有哪些?
常用的数学简便计算方法,有以下几种:1、交换律,例如aⅹb=bⅹa,a+b=b+a,2、结合律,例如a+b+c=a+(b+c)=a+c+b 3、凑整法,例如3+75+28=3+75+25+3=3+3+75+25=6+(75+25)=6+100=106 4、观察法,观察哪个式子可以起到作用,一般是能凑出整十,整百,整千的数先算...

小学数学中简便运算的方法有哪些?
小学数学中有很多简便运算的方法,以下是一些常见的方法:1.提取公因式法:将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。例如:0.92×1.41+0.92×8.59=0.92×(1.41+8.59)。2.借来借去法:用此方法时,需要注意观察,发现规律。考试中,看到有类似998、999或者1.98等...

简便计算,,,
小学数学中几种简便运算的方法 一、替换法 (重点是把接近整十数的数看成整十数加或减几)例1: 46+49 (把49看作50-1)= 46+50-1 = 96-1 = 95 例2: 54-28 (把28看作30-2)= 54-30+2 = 14+2 = 16 二、凑整法 (重点是找到适合凑整十的数)例1: 25+16+24 = 25+...

如何用简便方法计算
计算方法:1、利用运算定律。利用加法的交换律和结合律,乘法的交换律、结合律和分配律,可以使计算简便。2、分解因数。有的特殊数相乘是可以得到整数的,比如25和4,125和8等等,在我们遇到这些数字时,可以想办法把它们变成能得到整数的数字。3、数字变形。有的列式中的数字不能用简便方式,但是我们...

简便计算的窍门
简便计算的窍门如下:1、运用加法的交换律、结合律进行计算。2、运用乘法的交换律、结合律进行简算。3、运用乘法分配律进行简算,遇到除以一个数,先化为乘以一个数的倒数,再分配。4、运用减法的性质进行简算。减法的性质用字母公式表示:A-B-C=A-(B+C),同时注意逆进行。计算的定义有许多种使用...

相似回答