根据方法本身的性质特点将预测方法分为三类。
1、定性预测方法
根据人们对系统过去和现在的经验、判断和直觉进行预测,其中以人的逻辑判断为主,仅要求提供系统发展的方向、状态、形势等定性结果。该方法适用于缺乏历史统计数据的系统对象。
2、时间序列分析
根据系统对象随时间变化的历史资料,只考虑系统变量随时间的变化规律,对系统未来的表现时间进行定量预测。主要包括移动平均法、指数平滑法、趋势外推法等。该方法适于利用简单统计数据预测研究对象随时间变化的趋势等。
3、因果关系预测
系统变量之间存在某种前因后果关系,找出影响某种结果的几个因素,建立因与果之间的数学模型,根据因素变量的变化预测结果变量的变化,既预测系统发展的方向又确定具体的数值变化规律。
扩展资料:
预测模型是在采用定量预测法进行预测时,最重要的工作是建立预测数学模型。预测模型是指用于预测的,用数学语言或公式所描述的事物间的数量关系。它在一定程度上揭示了事物间的内在规律性,预测时把它作为计算预测值的直接依据。
因此,它对预测准确度有极大的影响。任何一种具体的预测方法都是以其特定的数学模型为特征。预测方法的种类很多,各有相应的预测模型。
趋势外推预测方法是根据事物的历史和现实数据,寻求事物随时间推移而发展变化的规律,从而推测其未来状况的一种常用的预测方法。
趋势外推法的假设条件是:
(1)假设事物发展过程没有跳跃式变化,即事物的发展变化是渐进型的。
(2)假设所研究系统的结构、功能等基本保持不变,即假定根据过去资料建立的趋势外推模型能适合未来,能代表未来趋势变化的情况。
由以上两个假设条件可知,趋势外推预测法是事物发展渐进过程的一种统计预测方法。简言之,就是运用一个数学模型,拟合一条趋势线,然后用这个模型外推预测未来时期事物的发展。
趋势外推预测法主要利用描绘散点图的方法(图形识别)和差分法计算进行模型选择。
主要优点是:可以揭示事物发展的未来,并定量地估价其功能特性。
趋势外推预测法比较适合中、长期新产品预测,要求有至少5年的数据资料。
组合预测法是对同一个问题,采用多种预测方法。组合的主要目的是综合利用各种方法所提供的信息,尽可能地提高预测精度。组合预测有 2 种基本形式,一是等权组合, 即各预测方法的预测值按相同的权数组合成新的预测值;二是不等权组合,即赋予不同预测方法的预测值不同的权数。
这 2 种形式的原理和运用方法完全相同,只是权数的取定有所区别。 根据经验,采用不等权组合的组合预测法结果较为准确。
回归预测方法是根据自变量和因变量之间的相关关系进行预测的。自变量的个数可以一个或多个,根据自变量的个数可分为一元回归预测和多元回归预测。同时根据自变量和因变量的相关关系,分为线性回归预测方法和非线性回归方法。
回归问题的学习等价于函数拟合:选择一条函数曲线使其很好的拟合已知数据且能很好的预测未知数据。
参考资料:百度百科——预测模型
参考资料:百度百科——定性预测
1、趋势外推预测方法
趋势外推预测方法是根据事物的历史和现实数据,寻求事物随时间推移而发展变化的规律,从而推测其未来状况的一种常用的预测方法。
趋势外推法的假设条件是:
(1)假设事物发展过程没有跳跃式变化,即事物的发展变化是渐进型的。
(2)假设所研究系统的结构、功能等基本保持不变,即假定根据过去资料建立的趋势外推模型能适合未来,能代表未来趋势变化的情况。
由以上两个假设条件可知,趋势外推预测法是事物发展渐进过程的一种统计预测方法。简言之,就是运用一个数学模型,拟合一条趋势线,然后用这个模型外推预测未来时期事物的发展。
2、回归预测方法
回归预测方法是根据自变量和因变量之间的相关关系进行预测的。自变量的个数可以一个或多个,根据自变量的个数可分为一元回归预测和多元回归预测。同时根据自变量和因变量的相关关系,分为线性回归预测方法和非线性回归方法。回归问题的学习等价于函数拟合:选择一条函数曲线使其很好的拟合已知数据且能很好的预测未知数据。
3、卡尔曼滤波预测模型
卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的模型,其基本思想是: 采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。
它适合于实时处理和计算机运算。卡尔曼滤波器问题由预计步骤,估计步骤,前进步骤组成。 在预计步骤中, t时状态的估计取决于所有到t-1 时的信息。在估算步骤中, 状态更新后, 估计要于时间t的实际观察比较。更新的状态是较早的推算和新观察的综合。 置于每一个成分的权重由“ Kalmangain”(卡尔曼增益) 决定,它取决于噪声 w 和 v。(噪声越小,新的观察的可信度越高,权重越大,反之亦然)。前进步骤意味着先前的“新”观察在准备下一轮预计和估算时变成了“旧” 观察。 在任何时间可以进行任何长度的预测(通过提前状态转换)。
4、组合预测模型
组合预测法是对同一个问题,采用多种预测方法。组合的主要目的是综合利用各种方法所提供的信息,尽可能地提高预测精度。组合预测有 2 种基本形式,一是等权组合, 即各预测方法的预测值按相同的权数组合成新的预测值;二是不等权组合,即赋予不同预测方法的预测值不同的权数。 这 2 种形式的原理和运用方法完全相同,只是权数的取定有所区别。 根据经验,采用不等权组合的组合预测法结果较为准确。
5、BP神经网络预测模型
BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。它是一种应用较为广泛的神经网络模型,多用于函数逼近、模型识别分类、数据压缩和时间序列预测等。点击打开链接(BP神经网络预测实例)
参考资料:百度百科-趋势外推法
本回答被网友采纳预测模型可分为哪几类?
预测模型可以分为以下三类。1 定性预测方法:此方法基于人们对系统过去和现在的经验、判断和直觉。它主要依赖人的逻辑判断,并提供系统发展的方向、状态和形势等定性结果。这类方法适用于那些缺乏历史统计数据系统对象的预测。2 时间序列分析:这种方法依据系统对象随时间变化的历史数据,只关注系统变量随时间...
预测的模型有哪些
预测的模型有很多种,主要包括以下几种:一、线性回归模型 线性回归模型是一种基于历史数据,通过对数据间的关系进行建模,对未来的趋势进行预测的一种模型。它假设自变量和因变量之间存在线性关系,通过最小化预测误差的平方和来求解参数,从而实现对未来数据的预测。二、逻辑回归模型 逻辑回归模型主要用于解...
预测模型有哪些
3. 决策树模型。4. 随机森林模型。5. 支持向量机模型。6. 神经网络模型。7. 时间序列模型。详细解释:1. 线性回归模型:这是一种统计学上的预测模型,用于根据一个或多个自变量来预测一个连续的输出值。它通过寻找最佳拟合直线来建立变量之间的关系。2. 逻辑回归模型:主要用于二分类问题。它通过对...
预测模型有哪些
预测模型有多种类型。一、回归分析模型 回归分析是一种统计学方法,用于分析两个或多个变量之间的关系。在预测模型中,回归分析模型被广泛采用。它通过拟合数据中的关系,建立变量之间的函数关系,从而进行预测。常见的回归分析模型包括线性回归、多项式回归、逻辑回归等。二、时间序列模型 时间序列模型主要用...
数学建模中用于预测的模型有哪些
1、蛛网模型:运用弹性原理解释某些生产周期较长的商品在失去均衡时发生的不同波动情况的一种动态分析理论。2、层次分析法:将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。3、熵权法:按照信息论基本原理的解释,信息是系统有序程度的一个度量,熵是...
预测模型有哪些
回归模型、微分方程、灰色预测、马尔可夫模型、神经元网络、小波分析
38-一些预测模型与方法简介(ARIMA、指数平滑等)
首先,预测模型可以分为三大类:解释模型、时间序列模型和混合模型。解释模型试图解释预测变量的波动原因,而时间序列模型则利用时间序列数据进行预测。混合模型结合了两者的特点,实现更为全面的预测。接着,我们深入探讨时间序列回归模型。这类模型的核心思路在于假设预测变量与其它变量之间存在线性关系。具体地...
几种常见的预测模型
1. 线性回归模型:线性回归可能是最简单的预测模型之一。它的基本思想是通过找到一条最佳拟合直线来预测一个因变量(目标)基于一个或多个自变量(特征)的值。例如,在房地产领域,线性回归可用于预测房价,其中房子的面积、房间数等可以作为自变量,而房价则是因变量。2. 逻辑回归模型:虽然名字中有&...
预测模型有哪些
不同的预测方法都依赖特定的数学模型,如主观构建的实体或虚拟形态,这些模型并非等同于商品,而是研发过程中的形态体现。从广义上看,模型是事物间相互影响的表达方式,能够随着相关事物变化而变化,其作用在于展现概念的性质,并通过不同实例来调整其表达形式。模型根据表现形式分为静态模型(不具有动力系统...
财务预测模型都有什么
财务预测模型主要包括以下几种:1. 线性回归模型:这是一种统计学上的预测分析模型,用于描述两个或多个变量之间的线性关系。在财务预测中,它常用于预测销售、利润和成本等财务指标。通过历史数据,可以建立变量间的线性方程,进而预测未来的财务状况。2. 时间序列分析模型:时间序列模型基于时间顺序的数据...