一元三次方程公式是什麽?4次呢?

如题所述

就是只有一个未知量,式中未知量有三(4)次方 一元三次方程ax^3+bx^2+cx+d=0
一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d=0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
卡尔丹公式的推导
第一步:
ax^3+bx^2+cx+d=0
为了方便,约去a得到
x^3+kx^2+mx+n=0
令x=y-k/3 ,
代入方程(y-k/3)^3+k(y-k/3)^2+m(y-k/3)+n=0 ,
(y-k/3)^3中的y^2项系数是-k ,
k(y-k/3)^2中的y^2项系数是k ,
所以相加后y^2抵消 ,
得到y^3+py+q=0,
其中p=(-k^2/3)+m ,
q=(2(k/3)^3)-(km/3)+n。
第二步:
方程x^3+px+q=0的三个根为:
x1=[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+
+[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3);
x2=w[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+
+w^2[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3);
x3=w^2[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+
+w[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3),
其中w=(-1+i√3)/2。
×推导过程:
1、方程x^3=1的解为x1=1,x2=-1/2+i√3/2=ω,x3=-1/2-i√3/2=ω^2 ;
2、方程x^3=A的解为x1=A^(1/3),x2=A^(1/3)ω,x3=A^(1/3)ω^2 ,
3、一般三次方程ax^3+bx^2+cx+d=0(a≠0),两边同时除以a,可变成x^3+sx^2+tx+u=0的形式。
再令x=y-s/3,代入可消去次高项,变成x^3+px+q=0的形式。
设x=u+v是方程x^3+px+q=0的解,代入整理得:
(u+v)(3uv+p)+u^3+v^3+q=0 ①,
如果u和v满足uv=-p/3,u^3+v^3=-q则①成立,
由一元二次方程韦达定理u^3和V^3是方程y^2+qy-(p/3)^3=0的两个根。
解之得,y=-q/2±((q/2)^2+(p/3)^3)^(1/2),
不妨设A=-q/2-((q/2)^2+(p/3)^3)^(1/2),B=-q/2+((q/2)^2+(p/3)^3)^(1/2),
则u^3=A;v^3=B ,
u= A^(1/3)或者A^(1/3)ω或者A^(1/3)ω^2 ;
v= B^(1/3)或者B^(1/3)ω或者B^(1/3)ω^2 ,
但是考虑到uv=-p/3,所以u、v只有三组解:
u1= A^(1/3),v1= B^(1/3);
u2=A^(1/3)ω,v2=B^(1/3)ω^2;
u3=A^(1/3)ω^2,v3=B^(1/3)ω,
最后:
方程x^3+px+q=0的三个根也出来了,即
x1=u1+v1=A^(1/3)+B^(1/3);
x2=A^(1/3)ω+B^(1/3)ω^2;
x3=A^(1/3)ω^2+B^(1/3)ω。

卡尔丹公式
方程x^3+px+q=0,(p,q∈R)
判别式△=(q/2)^2+(p/3)^3。
x1=A^(1/3)+B^(1/3);
x2=A^(1/3)ω+B^(1/3)ω^2;
x3=A^(1/3)ω^2+B^(1/3)ω。
这就是著名的卡尔丹公式。
卡尔丹判别法
当△=(q/2)^2+(p/3)^3>0时,有一个实根和一对个共轭虚根;
当△=(q/2)^2+(p/3)^3=0时,有三个实根,其中两个相等;
当△=(q/2)^2+(p/3)^3<0时,有三个不相等的实根。
编辑本段系数关系
设ax^3+bx^2+cx+d=0(a≠0)的三根为x1,x2,x3,则
x1+x2+x3=-b/a;
x1x2+x2x3+x1x3=c/a;
x1x2x3=-d/a。
编辑本段计算方法
下面介绍一个三次方求根计算方法:
X(n+1)=Xn+[A/X^2-Xn)1/3
n,n+1是下角标,A被开方数。
例如,A=5,5介于1的3次方至2的3次方之间。X0可以取1.1;1.2;1.3;1.4;1.5;1.6;1.7;1.8;1.9;2.0我们可以随意代入一个数,例如2,那么:
第一步,2+[5/(2×2)-2]×1/3=1.7=X1;
第二步,1.7+[5/(1.7×1.7)-1.7]×1/3=1.71=X2;
第三步,1.71+[5/(1.71×1.71)-1.71]×1/3=1.709=X3;
每次多取一位数。公式会自动反馈到正确的数值。
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-05-13
含有一个未知数,并且未知数的最高次数是3,一元四次类似。
第2个回答  2013-05-11
就是只有一个未知量,式中未知量有三次方,列如 aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0),4次也是同样的道理

一元三次方程公式是什麽?4次呢?
一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d=0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。卡尔丹公式的推导 第一步:ax^3+bx^2+cx+d=0 为了方便,约去a得到 x^3+kx^2+mx+n=0 令x=y-k\/3 ...

怎么解一元三次方程? 四次呢?
一元三次方程的标准型为aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。一元三次方程的公式解法有卡尔丹公式法与盛金公式法。两种公式法都可以解标准型的一元三次方程。由于卡尔丹公式解题存在复杂性,对比之下,盛金公式解题更为直观,效率更高。

一元三次、四次方程的求根公式是什么?
判别式Δ=(q\/2)^2+(p\/3)^3 标准型一元三次方程aX ^3+bX ^2+cX+d=0:令X=Y—b\/(3a)代入上式,可化为适合卡尔丹公式直接求解的特殊型一元三次方程Y^3+pY+q=0。【卡尔丹公式】X1=(Y1)^(1\/3)+(Y2)^(1\/3);X2= (Y1)^(1\/3)ω+(Y2)^(1\/3)ω^2;X3=(Y1)^(...

一元三次方程 和一元四次方程的求根公式是什么
解得t=(-q±(q^2+4(p\/3)^3)^0.5)\/2 所以u=((-q±(q^2+4(p\/3)^3)^0.5)\/2)^(1\/3),所以v=—p\/(3u)=(-p\/3)\/((-q±(q^2+4(p\/3)^3)^0.5)\/2)^(1\/3)所以y1=u+v =((-q±(q^2+4(p\/3)^3)^0.5)\/2)^(1\/3)+(-p\/3)\/((-q±(q^2+4(p\/3...

一元三次方程配方公式是什么?
一元三次方程万能化简公式:ax3+bx2+cx+d=0,而且一元三次方程只含有一个未知数(即“元”),并且未知数的最高次数为3次的整式方程。一般的三次方程不能用配方法求解,但四次方程可以。四次方程的标准解法就是引入参数后等式两边配平方,然后两边开方求解,参数通过解一个三次方程得到。得到的四...

一元三次方程配方公式是什么?
一元三次方程万能化简公式:ax3+bx2+cx+d=0,而且一元三次方程只含有一个未知数(即“元”),并且未知数的最高次数为3次的整式方程。一般的三次方程不能用配方法求解,但四次方程可以。四次方程的标准解法就是引入参数后等式两边配平方,然后两边开方求解,参数通过解一个三次方程得到。配方法 我...

如何用公式法解一元三次四次方程
(4)x^3-3(AB)^(1\/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1\/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p\/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元...

一元三次方程怎么求根?
三次方程求根公式为:ax3+bx2+cx+d=0。标准型的一元三次方程aX^3+bX^2+cX+d=0(a,b,c,d∈R,且a≠0)其解法有:1、意大利学者卡尔丹于1545年发表的卡尔丹公式法;2、中国学者范盛金于1989年发表的盛金公式法。一元三次方程解法思想是:通过配方和换元,使三次方程降次为二次方程求解。...

一元三次方程怎么解?
一元三次方程求根公式:http:\/\/baike.so.com\/doc\/5568385-5783548.html标准型的一元三次方程aX^3+bX^2+cX+d=0(a,b,c,d∈R,且a≠0),其解法有:1、意大利学者卡尔丹于1545年发表的卡尔丹公式法;2、中国学者范盛金于1989年发表的盛金公式法。两种公式法都可以解标准型的一元三次方程。用卡尔丹公式解题方便...

一元三次方程的求根公式是什么?
三次方程形式为:ax3+bx2+cx+d=0。标准型的一元三次方程aX^3+bX^2+cX+d=0(a,b,c,d∈R,且a≠0)其解法有:1、意大利学者卡尔丹于1545年发表的卡尔丹公式法;2、中国学者范盛金于1989年发表的盛金公式法。

相似回答