一元二次方程的解

3x^2-5x+2>0用公式法的解法步骤是怎样的,还想问下一元二次不等式的一般解法?

3x^2-5x+2>0 一般式为ax^2+bx+c>0 把a看成3把b看成-5,把c看成2,然后用十字相乘法把3分解成3和1,把2分解成-2和-1,用3乘以-1,用1乘以-2,就得到:
(3x-2)(X-1)>0 ,就得到3x-2>0,x-1>0或者都<0 ,解出
x>2/3,x>1或者x<2/3,x<1,x>1或x<2/3,综上就得到
答案:x>1或x<2/3
一元二次不等式的一般解法是[-b+(b^2-4ac)^1/2]/2a
或者是[-b-+(b^2-4ac)^1/2]/2a,
还有君子定义:X1+X2=-b/a,X1*X2=c/a.
X1和X2是不等式的两个不同的解。
温馨提示:内容为网友见解,仅供参考
第1个回答  2008-06-05
教学目标

1. 初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如 的方程;

2. 初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;

3. 掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;

4. 会用因式分解法解某些一元二次方程。

5. 通过对一元二次方程解法的教学,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。

教学重点和难点

重点:一元二次方程的四种解法。

难点:选择恰当的方法解一元二次方程。

教学建议:

一、教材分析:

1.知识结构:一元二次方程的解法

2.重点、难点分析

(1)熟练掌握开平方法解一元二次方程

用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。

如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程 , 和方程 就可以直接开平方法求解,在开平方时注意取正、负两个平方根。

配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为 的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。

(2)熟记求根公式 ( )和公式中字母的意义在使用求根公式时要注意以下三点:

1)把方程化为一般形式,并做到 、 、 之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。

2)把一元二次方程的各项系数 、 、 代入公式时,注意它们的符号。

3)当 时,才能求出方程的两根。

(3)抓住方程特点,选用因式分解法解一元二次方程

如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。

我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。

二、教法建议

1. 教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.
2. 注意培养应用意识.教学中应不失时机地使学生认识到数学源于实践并反作用于实践.

教学设计示例

教学目标
1. 使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0, b≠0, c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;
2. 在理解的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”;
3. 在数学思想方法方面,使学生体会“转化”的思想和掌握配方法。

教学重点和难点
重点:掌握用配方法解一元二次方程。
难点:凑配成完全平方的方法与技巧。

教学过程设计
一 复习
1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)

2.不完全一元二次方程的哪几种形式?

(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))

3.对于前两种不完全的一元二次方程ax2=0 (a≠0)和ax2+c=0 (a≠0),我们已经学会了它们的解法。

特别是结合换元法,我们还会解形如(x+m) 2=n(n≥0)的方程。

例 解方程:(x-3) 2=4 (让学生说出过程)。

解:方程两边开方,得 x-3=±2,移项,得 x=3±2。

所以 x1=5,x2=1. (并代回原方程检验,是不是根)

4.其实(x-3) 2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。(把这个展开过程写在黑板上)

(x-3) 2=4, ①

x2-6x+9=4, ②

x2-6x+5=0. ③

二 新课
1.逆向思维
我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m) 2=n的形式。这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m) 2。

2.通过观察,发现规律

问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。 (添一项+1)

即 (x2+2x+1)=(x+1) 2.

算理 x2+4x=2x·2�,所以添2的平方,y2+6y=y2+2y3�,所以添3的平方。

总结规律:对于x2+px,再添上一次项系数一半的平方,就能配出一个含未知数的一个次式的完全平方式。即 .+ ( ) ④

(让学生对④式的右边展开,体会括号内第一项与第二项乘积的2倍,恰是左边的一次

项,括号内第二项的平方,恰是配方时所添的常数项)
第2个回答  2008-05-26
3x^2-5x+2>0
(3x-2)(X-1)>0
3x-2>0,x-1>0或者都<0
x>2/3,x>1或者x<2/3,x<1
x>1或x<2/3本回答被提问者采纳
第3个回答  2008-05-28
公式法:因为a=3 b=-5 c=2 然后用公式-b+或-根号下b平方-4ac除以2a
即: X1= -(-5)也就是 5+根号4*3*2除以2*3求得:
5+2倍根号6/6
X2=-5-(-5)也就是 5-根号4*3*2除以2*3求得:5-2倍根号6/6
第4个回答  2020-04-22

一元二次方程公式解

如何解一元二次方程?
一元二次方程四中解法。一、公式法。二、配方法。三、直接开平方法。四、因式分解法。公式法1先判断△=b_-4ac,若△<0原方程无实根;2若△=0,原方程有两个相同的解为:X=-b\/(2a);3若△>0,原方程的解为:X=((-b)±√(△))\/(2a)。配方法。先把常数c移到方程右边得:aX_...

一元二次方程怎么解?
如:解方程:x^2+2x+1=0 解:利用完全平方公式因式分解得:(x+1﹚^2=0 解得:x1=x2=-1 4.直接开平方法 (可解部分一元二次方程)5.代数法 (可解全部一元二次方程)ax^2+bx+c=0 同时除以a,可变为x^2+bx\/a+c\/a=0 设:x=y-b\/2 方程就变成:(y^2+b^2\/4-by)+(by+b...

一元二次方程的求解公式是什么?
一元二次方程有4种解法,即直接开平方法、配方法、公式法、因式分解法。公式法可以解任何一元二次方程。因式分解法,也就是十字相乘法,必须要把所有的项移到等号左边,并且等号左边能够分解因式,使等号右边化为0。配方法比较简单:首先将二次项系数a化为1,然后把常数项移到等号的右边,最后在等号...

一元二次方程的解法公式法
一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:1、直接开平方法。2、配方法。3、公式法。4、因式分解法。相关概念:1、含有未知...

一元二次方程解法公式
一元二次方程求解公式为:ax²+bx+c=0。一元二次方程求解公式为:ax²+bx+c=0。一元二次方程的定义为:只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、...

解一元二次方程的四种方法
解一元二次方程的四种方法如下:1、因式分解法:如果方程可以因式分解成两个一次因式的乘积,则可通过将每个一次因式分别置零求解得到方程的解。2、完全平方公式法:对一个二次三项式,可以利用完全平方公式,将其表示为一个平方项加上一个常数项,然后整理可得到方程的标准形式,并求解。3、配方法:当...

什么是一元二次方程的解?
一元二次方程经过整理都可化成一般形式ax+bx+c=0(a≠0)。其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。在一元二次方程y=ax_+bx+c(a、b、c是常数)中,当△=b_-4ac>0时,方程有两个解,根据求根公式x=(-b±√(b_-4ac))/2a即刻求出...

怎样解一元二次方程式
1、公式法:一元二次方程的解可以通过求根公式来得到。根据求根公式,一元二次方程的解为x=(-b±√(b^2-4ac))\/(2a)。通过代入方程中的系数a、b、c,计算出两个根的值。2、配方法:当一元二次方程无法直接使用公式法求解时,可以使用配方法。配方法的基本思想是通过构造一个完全平方的形式,...

一元二次方程的解怎么算?
1.答案是:x1+x2=-b\/a;x1×x2=c\/a。2.解答过程:设一元二次方程为ax²+bx+c=0。△=b²-4×a×c;x1=(-b+√△)\/(2×a)=(-b+√(b²-4×a×c))\/(2×a);x2=(-b-√△)\/(2×a)=(-b-√(b²-4×a×c))\/(2×a);x1+x2=-b\/a;x1×...

一元二次方程怎么解?
一元二次方程有六种解法:1. 因式分解法:将一元二次方程化成ax^2+bx+c=0的形式后进行拆解,得到两个一元一次方程,进而求解的方法。2. 公式法:通过求解公式x=(b±√(b^2-4ac))\/2a来求解一元二次方程的方法。3. 图像法:通过作出ax^2+bx+c=0的图像,观察图像上的交点,从而得到方程的...

相似回答