通项公式求法如下:
通项公式的求法:
Sn法,根据等差数列、等比数列的定义求通项an=Sn-Sn-1;累加、累乘法;待定系数法;倒数变换法,适用于分式关系的递推公式,分子只有一项;换元法,适用于含根式的递推关系。
按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an 项的值。而数列通项公式的求法,通常是由其递推公式经过若干变换得到。
通项公式
如果数列{an}的第n项an与n之间的关系可以用一个公式来表示,这个公式叫做数列的通项公式(general formulas)。有的数列的通项可以用两个或两个以上的式子来表示。没有通项公式的数列也是存在的,如所有质数组成的数列。
性质
若已知一个数列的通项公式,那么只要依次用1,2,3,...去代替公式中的n,就可以求出这个数列的各项。
不是任何一个无穷数列都有通项公式,如所有的质数组成的数列就没有通项公式。
给出数列的前n项,通项公式不唯一。
有的数列的通项可以用两个或两个以上的式子来表示。
通项公式求法
通项公式求法如下:通项公式的求法:Sn法,根据等差数列、等比数列的定义求通项an=Sn-Sn-1;累加、累乘法;待定系数法;倒数变换法,适用于分式关系的递推公式,分子只有一项;换元法,适用于含根式的递推关系。按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子(含有参数n)...
通项怎么求
通项的求法:一、观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项。二、累加法:形如an+1=an+f(n)型的递推数列(其中f(n)是关于n的函数)将上述n-1个式子两边分别相加,可得:an=f(n-1)+f(n-2)+?+f(2)+f(1)...
递推公式求通项公式的方法
一、通项公式的求法 (1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式;(2)构造等差数列:递推式不能构造等比数列时,构造等差数列;(3)递推:即按照后项和前项的对应规律,再往前项推写对应式。二、一般数列的定义:如果数列{an}的第n项an与序号n之间的...
求通项公式的7种方法,带例题。
an=sn当n≥2 时, an=sn-sn-1例6、已知数列前项和s=n2+1,求{an}的通项公式.当n=1时,an=sn=2当n≥2 时, an=sn-sn-1=n+1-[(n-1)2+1]=2n-1而n=1时,a1=2不适合上式∴当n=1时,an=2当n≥2 时,
常见的八种数列通项公式是什么呢?
常见8个数列的通项公式是等差数列、等比数列、一阶数列、二阶数列、累加法、累乘法、构造法、连加相减法。分别如下:等差数列:对于一个数列{ an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为 d ;从第一项 a1到第n项 an的总和,记为Sn。通项公式为:...
求通项公式方法汇总
4、递推归纳法:根据题目中所给的递推关系,可构造等差数列或采取叠加,叠乘的方法,消去中间项求通项公式。5、两式相减,消项求通项。如果数列{An}的第n项与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。如果一个数列的第n项An与其项数n之间的关系可用式子An=F{n}...
怎么求通项公式
对于等差数列与等比数列,可以通过求出基本量:首项与公差(或公比),然后代入对应的通项公式,求出其通项公式。而对于一般数列求通项公式,常用的方法有:an与Sn关系式法、累加法、累乘法与构造法。一、an与Sn关系式法 an=Sn-Sn-1适用的条件是n≥2,利用此公式求得an后,一定要验证n=1时是否...
求数列的通项公式的方法
八种求数列通项公式的方法 一、公式法例1 已知数列 满足 , ,求数列 的通项公式。解: 两边除以 ,得 ,则 ,故数列 是以 为首项,以 为公差的等差数列,由等差数列的通项公式,得 ,所以数列 的通项公式为 。评注:本题解题的关键是把递推关系式 转化为 ,说明数列 是等差数列,再直接...
数列通项公式求法总结
数列通项公式求法总结如下:等差数列:通项公式an=a1+(n-1)d,首项a1,公差d,an第n项数an=ak+(n-k)d,ak为第k项数,若a,A,b构成等差数列,则A=(a+b)\/22。等差数列前n项和:设等差数列的前n项和为:Sn即Sn=a1+a2+...+an;那么Sn=na1+n(n-1)d\/2=dn^2(即n的2次方)\/2+(a1...
数列通项公式的求法。
1、用累加法求an=an-1+f(n)型通项 2、用累积法求an= f(n)an-1型通项 3、用待定系数法求an=Aan-1+B型数列通项 4、通过Sn求an 5、取倒数转化为等差数列 6、构造函数模型转化为等比数列 7、数学归纳法 普遍的方法举例:(1)数列{an}满足a1=1且an=an-1+3n-2(n≥2),求...