如何判断一个函数是否存在极限,是否连续,是否可导,是否可微?

补充:四者之间有没有什么联系?最好举例说明!谢谢

函数只要其图像有一段连续就可导,可微应该是全图像连续才可以,连续就需要看定义域(如果在高中的话定义域连续函数一般都连续),极限要求连续,它要看函数的值域,函数的值域必须有一端是有意义的,即不能是无穷,且在这端定义域应该是无穷,这样在这端函数才有极限。

当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:

第一:因式分解,通过约分使分母不会为零。

第二:若分母出现根号,可以配一个因子使根号去除。

第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小

扩展资料:

一个实变量函数是可导函数,若其在定义域中每一点导数存在。如果f是在x0处可导的函数,则f一定在x0处连续,特别地,任何可导函数一定在其定义域内每一点都连续。反过来并不一定。事实上,存在一个在其定义域上处处连续函数,但处处不可导。

若ƒ在X0点可微,则ƒ在该点必连续。特别的,所有可微函数在其定义域内任一点必连续。逆命题则不成立:一个连续函数未必可微。比如,一个有折点、尖点或垂直切线的函数可能是连续的,但在异常点不可微。

如果一个函数的所有偏导数在某点的邻域内存在且连续,那么该函数在该点可微,而且是classC。(这是可微的一个充分不必要条件)形式上,一个多元实值函数f:R→R在点x0处可微。

参考资料来源:百度百科——函数极限

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2017-12-15
极限的概念是整个微积分的基础,需要深刻地理解,由极限的概念才能引出连续、导数、积分等概念。极限的概念首先是从数列的极限引出的。对于任意小的正数E,如果存在自然数M,使所有N》M时,|A(N)-A|都小于E,则数列的极限为A。极限不是相等,而是无限接近。而函数的极限是指在X0的一个临域内(不包含X0这一点),如果对于任意小的正数E,都存在正数Q,使所有(X0-Q,X0+Q)内的点,都满足|F(X)-A|《E,则F(X)在X0点的极限为A。很多求极限的题目都可以用极限的定义直接求出。
  例如F(X)=(X^2-3X+2)/(X-2), X=2不在函数定义域内,但对于任何X不等于2,F(X)=X-1,因此在X无限接近2,但不等于2时,F(X)无限接近1,因此F(X)在2处的极限为1。
  连续的概念。如果函数在X0的极限存在,函数在X0有定义,而且极限值等于函数值,则称F(X)在X0点连续。以上的三个条件缺一不可。
  在上例中,F(X)在X=2时极限存在,但在X=2这一点没有定义,所以函数在X=2不连续;
  如果我们定义F(2)=1,补上“缺口”,则函数在X=2变成连续的;
  如果我们定义F(2)=3,虽然函数在X=2时,极限值和函数值都存在,但不相等,那么函数在X=2还是不连续。
  由连续又引出了左极限、右极限和左连续、右连续的概念。函数值等于左极限为左连续,函数值等于右极限为右连续。如果函数在X0点左右极限都存在,且都等于函数值,则函数在X=X0时连续。这个定义是解决分段函数连续问题的最重要的、几乎是唯一的方法。
  如果函数在某个区间内每一点都连续,在区间的左右端点分别左右连续(对闭区间而言),则称函数在这个区间上连续。
  导数的概念。导数是函数的变化率,直观地看是指切线的斜率。略有不同的是,切线可以平行于Y轴,此时斜率为无穷大,因此导数不存在,但切线存在。
  导数的求法也是一个极限的求法。对于X=X0,在X0附近另找一点X1,求X0与X1连线的斜率。当X1无限靠近X0,但不与X0重合时,这两点连线的斜率,就是F(X)在X=X0处的导数。关于导数的题目多数可用导数的定义直接解决。教科书中给出了所有基本函数的导数公式,如果自己能用导数的定义都推导一遍,理解和记忆会更深刻。其中对数的导数公式推导中用到了重要极限:limx-->0 (1+x)^(1/x)=e。
  导数同样分为左导数和右导数。导数存在的条件是:F(X)在X=X0连续,左右导数存在且相等。这个定义是解决分段函数可导问题的最重要的、几乎是唯一的方法。
  如果函数在某个区间内每一点都可导,在区间的左右端点分别左右导数存在(对闭区间而言),则称函数在这个区间上可导。
  复合函数的导数,例如f[u(x)],是集合A中的自变量x,产生微小变化dx,引起集合B中对应数u的微小变化du,u的变化又引起集合C中的对应数f(u)的变化,则复合函数的导函数f’[u(x)]=df(u)/dx=df(u)/du * du/dx=f’(u)*u‘(x)
  导数在生活中的例子最常见的是距离与时间的关系。物体在极其微小的时间内,移动了极其微小的距离,二者的比值就是物体在这一刻的速度。对于自由落体运动,下落距离S=1/2gt^2,则物体在时间t0的速度为V(t0)=[S(t0+a)-S(t0)]/a, 当a趋近于0时的值,等于gt0; 而速度随时间的增加而增加,变化的比率g称为加速度。加速度是距离对时间的二阶导数。
  从直观上看,可导意味着光滑的、没有尖角,因为在尖角处左右导数不相等。有笑话说一位教授对学生抱怨道:“这饭馆让人怎么吃饭?你看这碗口,处处不可导!”
  积分的概念。从面积上理解,积分就是积少成多,把无限个面积趋近于0的线条,累积在一起,就成为大于0的面积。我们可以把一块图形分割为狭长的长方形(长方形的高度都取函数在左端或右端的函数值),分别计算各个长方形的面积再加总,可近似地得出图形的面积。当我们把长方形的宽度设定得越来越窄,计算结果就越来越精确,与图形实际面积的差距越来越小。如果函数的积分存在,则长方形宽度趋近于0时,求出的长方形面积总和的极限存在,且等于图形的实际面积。这里又是一个极限的概念。
  如果函数存在不连续的点,但在该点左右极限都存在,函数仍是可积的。只要间断点的个数是有限的,则它们代表的线条面积总和为0,不影响计算结果。
  在广义积分中,允许函数在无限区间内积分,或某些点的函数值趋向无穷大,只要积分的极限存在,函数都是可积的。
  严格地说,我们只会计算长方形的面积。从我们介绍的积分的求法看,我们实际上是把求面积化为了数列求和的问题,即求数列的前N项和S(N),在N趋近于无穷大时的极限。很多时候,求积分和求无限数列的和是可以相互转换的。当我们深刻地理解了积分的定义和熟练地掌握了积分公式之后,我们同样可用它来解决相当棘手的数列求和问题。
  例如:求LIM Na正无穷大时,1/N*[1+1/(1+1/N)+1/(1+2/N)+。。。+1/(1+(N-1)/N)+1/2]的值。
  看似无从下手,可当我们把它转化为一连串的小长方形的面积之后,不禁会恍然大悟:这不是F(X)=1/X在[1,2]上的积分吗?从而轻松得出结果为ln2。
  除了基本的积分公式外,换元法和分步法是常用的积分方法。换元积分法的实质是把原函数化为形式简单的复合函数;分步积分法的要领是:在∫udv=uv-∫vdu中,函数u微分后应该变简单(比如次数降低),而函数v积分后不会变得更复杂。本回答被网友采纳
第2个回答  2013-09-22
可导必连续,连续极限必存在,反之不真。
第3个回答  2013-09-22
A(N)-A|都小于E,则数)^(1/x)=e。
  导数同样引起集合B中对应数u的微小变化du,u的变化又引起集合C中的对应数f(u)的变化,则复合函数的导函数f’[u(x)]=df(u)/dx=df(u)/du * 可用它来解决相当次数降低),而函数v分后不会变得更复杂。
第4个回答  2013-09-22
有一点我敢肯定,那就是可微一定可导

如何判断一个函数是否存在极限,是否连续,是否可导,是否可微?
函数只要其图像有一段连续就可导,可微应该是全图像连续才可以,连续就需要看定义域(如果在高中的话定义域连续函数一般都连续),极限要求连续,它要看函数的值域,函数的值域必须有一端是有意义的,即不能是无穷,且在这端定义域应该是无穷,这样在这端函数才有极限。当分母等于零时,就不能将趋向值...

如何判断一个函数是否存在极限,是否连续,是否可导,是否可微?
连续的概念。如果函数在X0的极限存在,函数在X0有定义,而且极限值等于函数值,则称F(X)在X0点连续。以上的三个条件缺一不可。在上例中,F(X)在X=2时极限存在,但在X=2这一点没有定义,所以函数在X=2不连续;如果我们定义F(2)=1,补上“缺口”,则函数在X=2变成连续的;如果我们...

如何判断函数在一点是否连续和可导
至于判断在某一点上函数是否连续或可导,即判断某个极限是否存在。判断函数f在点x0处是否连续,即判断极限lim(x--x0)f(x)是否存在且等于f(x0)。判断函数f在点x0处是否可导,即判断极限lim(dx--0)(f(x+dx)-f(x))\/dx是否存在。对于连续性,在自然界中有许多现象,如气温的变化,植物的生长...

...函数是否连续、可导、可微,极限、原函数是否存在
首先,极限的确定至关重要。一个函数在自变量趋于无穷大或有限值时,如果函数值的极限存在,那么这个函数在该点的极限性质成立。当自变量变化趋向于0时,函数值的改变量也必须趋近于0,且该点的极限应等于其函数值,这样函数才被认为是连续的。其次,连续性是函数基本的光滑性质。若函数在某点左极限、右...

怎么判断函数的连续性和可导性?大学的微积分 导数?
一个函数在某一区间上连续(可导)指的是该函数在此区间的任意一点上连续(可导).至于判断在某一点上函数是否连续或可导,即判断某个极限是否存在.判断函数f在点x0处是否连续,即判断极限lim(x--x0)f(x)是否存在且等于f(x0)判断函数f在点x0处是否可导,即判断极限lim(dx--0)(f(x+dx)-f(x...

如何判断一个函数是否可导具有可导性
首先判断函数在这个点x0是否有定义,即f(x0)是否存在;其次判断f(x0)是否连续,即f(x0-), f(x0+), f(x0)三者是否相等;再次判断函数在x0的左右导数是否存在且相等,即f‘(x0-)=f'(x0+),只有以上都满足了,则函数在x0处才可导。可导的函数一定连续;不连续的函数一定不可导。可导,...

如何判断函数的连续性及可导性?
判断函数连续性与可导性的方法如下:1. 判断函数在某一点x处的连续性:若函数在x处连续,则其图像与x轴无间隙相交。2. 判断函数在某一点x处的可导性:若函数在x处可导,则存在一个斜率,使得在该点的切线与函数图像相切。3. 应用罗尔定理:若函数在某区间内连续,并且在区间两端取值不同,则至少...

怎样判断一个函数是否可导?
判断一个函数是否可导,其步骤如下:1、检查函数是否在定义域内连续。如果函数在定义域内不连续,那么它一定不可导。这是因为函数的导数是在其定义域内连续函数的基础上计算的。2、检查函数在定义域内的极值点。极值点是函数值发生变化的点,即函数在某一点的导数为零。如果一个函数在定义域内有极值点...

可微、可导、连续、偏导存在、极限存在之间的关系是什么?
可微、可导、连续、偏导存在、极限存在之间的关系是:函数的极限存在不一定连续,连续不一定可导,可导则必然连续且极限存在,偏导存在不一定连续,连续不一定可微,但可微一定连续。首先,我们来看极限存在与连续的关系。一个函数在某点的极限存在,并不意味着该函数在该点连续。例如,函数f = {x, x&...

关于连续、可微、可导的判断?
对于一点x连续只需满足三个条件1:x在这个函数上有定义.2:在x处存在极限,即它的左右极限相等.3:在x处的极限值A=F(x).拿这三个条件就可判定是否连续.对于最上面一题我认为可选2.对这个等式同时除以⊿X再两边取极限,则可得到F'(X0)=A 对于一点x可导,只需要对这点求极限,极限存在...

相似回答