探索勾股定理

说以下是我们初二要学的谢谢啦

第1个回答  2013-09-20
勾股定理的证明

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。
在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。
首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。
1.中国方法
画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。

左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是
a2+b2=c2。
这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。
2.希腊方法
直接在直角三角形三边上画正方形,如图。
容易看出,
△ABA’ ≌△AA’’ C。
过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。
△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。
于是,
S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,
即 a2+b2=c2。
至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。
这就是希腊古代数学家欧几里得在其《几何原本》中的证法。
以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:
⑴ 全等形的面积相等;
⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。
这是完全可以接受的朴素观念,任何人都能理解。
我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:
如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。
赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。
西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。
下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。
如图,
S梯形ABCD= (a+b)2
= (a2+2ab+b2), ①
又S梯形ABCD=S△AED+S△EBC+S△CED
= ab+ ba+ c2
= (2ab+c2)。 ②
比较以上二式,便得
a2+b2=c2。
这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。
1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。
在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。
如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则
△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD �6�1 BA, ①
由△CAD∽△BAC可得AC2=AD �6�1 AB。 ②
我们发现,把①、②两式相加可得
BC2+AC2=AB(AD+BD),
而AD+BD=AB,
因此有 BC2+AC2=AB2,这就是
a2+b2=c2。
这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。
在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:
设△ABC中,∠C=90°,由余弦定理
c2=a2+b2-2abcosC,
因为∠C=90°,所以cosC=0。所以
a2+b2=c2。
这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。
人们对勾股定理感兴趣的原因还在于它可以作推广。
欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。
从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。
勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。
若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。
如此等等。

【附录】
一、【《周髀算经》简介】
《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。
《周髀算经》使用了相当繁复的分数算法和开平方法。

二、【伽菲尔德证明勾股定理的故事】
1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。
于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。

下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。
如图,
S梯形ABCD= (a+b)2
= (a2+2ab+b2), ①
又S梯形ABCD=S△AED+S△EBC+S△CED
= ab+ ba+ c2
= (2ab+c2)。 ②
比较以上二式,便得
a2+b2=c2。
这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。
1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。
在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。
如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则
△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD �6�1 BA, ①
由△CAD∽△BAC可得AC2=AD �6�1 AB。 ②
我们发现,把①、②两式相加可得
BC2+AC2=AB(AD+BD),
而AD+BD=AB,
因此有 BC2+AC2=AB2,这就是
a2+b2=c2。
这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。
在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:
设△ABC中,∠C=90°,由余弦定理
c2=a2+b2-2abcosC,
因为∠C=90°,所以cosC=0。所以
a2+b2=c2。
这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。
人们对勾股定理感兴趣的原因还在于它可以作推广。
欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。
从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。
勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。
若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。
如此等等。
第2个回答  2013-09-20
勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理。是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。[1]1 定理 2 勾股数组 3 历史 4 证明 4.1 利用相似三角形的证法 4.2 欧几里得的证法 4.3 图形重新排列证法 5 勾股定理的逆定理 6 参见 7 注释 8 外部链接 [编辑] 定理 一种证明方法的图示:左右两正方形面积相等,各扣除四块蓝色三角形后面积仍相等 勾股定理指出:直角三角形两直角边(即“勾”、“股”)边长平方和等于斜边(即“弦”)边长的平方。 也就是说,设直角三角形两直角边为a和b,斜边为c,那么 a2 + b2 = c2 </dd>只要知道直角三角形的任意两条边,便可计算出第三条边。勾股定理同时是余弦定理中的一个特例。勾股定理现约有400种证明方法,是数学定理中证明方法最多的定理之一。[编辑] 勾股数组 主条目:勾股数勾股数组是满足勾股定理a2 + b2 = c2的正整数组(a,b,c),其中的a,b,c称为勾股数。例如(3,4,5)就是一组勾股数组。任意一组勾股数(a,b,c)可以表示为如下形式:a = k(m2 �6�1 n2),b = 2kmn,c = k(m2 + n2),其中。[编辑] 历史 这个定理的历史可以被分成三个部份:发现勾股数、发现直角三角形中边长的关系、及其定理的证明。中国古代的《周髀算经》中,记载了商朝的商高发现了(3,4,5)这组勾股数:“故折矩,以为句,广三,股修四,径隅五。”—周髀算经 卷上之一直至现时为止,有许多辩论关于勾股定理是否早已不只一次被发现。有人说是在西元前2000年由英国发现,然后传播到达米亚。然而,许多学者并不同意这说法。最近,Jagadguru Swami Sri Bharati Krishna Tirthaji Maharaja在吠陀数学一书中声称古代印度教吠陀证明了勾股定理。[编辑] 证明 这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(Elisha Scott Loomis)的 Pythagorean Proposition一书中总共提到367种证明方式。有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。[编辑] 利用相似三角形的证法 利用相似三角形证明 有许多勾股定理的证明方式,都是基于相似三角形中两边长的比例。设ABC为一直角三角形, 直角于角C(看附图). 从点C画上三角形的高,并将此高与AB的交叉点称之为H。此新三角形ACH和原本的三角形ABC相似,因为在两个三角形中都有一个直角(这又是由于“高”的定义),而两个三角形都有A这个共同角,由此可知第三只角都是相等的。同样道理,三角形CBH和三角形ABC也是相似的。这些相似关系衍生出以下的比率关系:因为所以可以写成综合这两个方程式,我们得到换句话说:[编辑] 欧几里得的证法 《几何原本》中的证明 在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。在正式的证明中,我们需要四个辅助定理如下:如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。其证明如下:设△ABC为一直角三角形,其直角为CAB。 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。 分别连接CF、AD,形成两个三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。 ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。 因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。 因此四边形 BDLK 必须有相同的面积 BAGF = AB�0�5。 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC�0�5。 把这两个结果相加, AB�0�5+ AC�0�5 = BD×BK + KL×KC 由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB�0�5 + AC�0�5 = C�0�5。 此证明是于欧几里得《几何原本》一书第1.47节所提出的[2][编辑] 图形重新排列证法 以面积减算法证明 此证明以图形重新排列证明。两个大正方形的面积皆为(a + b)2。把四个相等的三角形移除后,左方余下面积为a2 + b2,右方余下面积为c2,两者相等。证毕。以重新排列法证明 [编辑] 勾股定理的逆定理 勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中c为最长边:如果,则△ABC是直角三角形。 如果,则∠C是锐角(还要再检验∠A及∠B后,才可确认△ABC是不是锐角三角形)。 如果,则△ABC是钝角三角形。 http://zh.wikipedia.org/wiki/%e5%8b%be%e8%82%a1%e5%ae%9a%e7%90%86
第3个回答  2013-09-20
在直角三角形中,斜边的平方等于两个直角边的平方和
第4个回答  2013-09-20
勾三股四弦五直角边平方的和等于斜边的平方

探索勾股定理是什么?
探索勾股定理是:直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希...

探索勾股定理的多种证明方法!
我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令...

探索勾股定理方法集锦
1.直接证明法:这种方法是最直接、最基础的证明方法。通过直接使用勾股定理的定义和已有的公理、定理,证明勾股定理的正确性。这种方法需要一定的数学基础和逻辑推理能力。2.拼接证明法:首先通过将两个或多个直角三角形拼接在一起,形成一个更大的三角形,然后利用三角形面积公式进行证明。这种方法需要一定...

2.6探索勾股定理(1)答案谢谢
a²+b²=c²(就是勾股定理啦)

探索勾股定理是什么?
勾股定理是一个基础的数学定理,它表明在直角三角形中,直角边的平方和等于斜边的平方。勾股定理的历史可以追溯到公元前6世纪的中国,由周朝时期的数学家商高提出。在西方,古希腊数学家毕达哥拉斯学派也独立发现了这一定理,因此勾股定理在西方又被称为“毕达哥拉斯定理”。勾股定理的公式可以...

探索勾股定理的证明
勾股定理的理论证明可以通过代数或几何的方法进行。下面是一种常见的代数证明方法:假设有一个直角三角形,其两个直角边的长度为 a 和 b,斜边的长度为 c。根据勾股定理,知道 a^2 + b^2 = c^2。可以通过代数运算来证明这个等式。首先,将直角三角形的两个直角边的长度分别表示为 m 和 n 的...

勾股定理的勾股数规律(勾股数的规律公式)
规律一:基本勾股数的生成 我们先从基础说起,勾股数通常指的是满足勾股定理的三个正整数,如3, 4, 5。它们之间的关系是:第一个数与第二个数的平方和等于第三个数的平方。在这个简单的框架下,我们发现了第一个勾股数规律:当m是一个正整数时,m+1, m-1, 和 2m 就构成了一个勾股数组。...

初二数学探索勾股定理第七页知识技能的第一题 是一个直角三角形 三角形...
解:根据勾股定理"直角三角形中,斜边的平方等于另外两边的平方和"可知:13^2=5^2+y^2,y^2=144,y=12.(取正值).注:不要死记公式,而是要明白勾股定理的本质.

探索勾股定理:在直角三角形ABC中,斜边长为5,周长为12,求三角形ABC的面 ...
设一直角边为x x^2+(12-5-x)^2=25 x=4 or 3 s=4*3*1\/2=6

探索勾股定理的一个直角边怎么算出来
a.b为直角边 a^2+b^2=c^2 所以a^2=c^2-b^2 即b^2=c^2-a^2 注:^2=平方

相似回答