可积和存在原函数的区别在于存在原函数的话,就一定可积,用牛莱公式就可以计算出积分值,可积分就是能算面积,反常积分如果可能可积,但不存在原函数。
可积函数是存在积分的函数。除非特别指明,一般积分是指勒贝格积分。否则,称函数为黎曼可积(也即黎曼积分存在),或者Henstock-Kurzweil可积等等。
给定集合X及其上的σ-代数σ和σ上的一个测度,实值函数f:X→R是可积的如果正部f和负部f都是可测函数并且其勒贝格积分有限。令为f的"正部"和"负部"。
如果f可积,则其积分定义为对于实数p≥0,函数f是p-可积的如果|f|是可积的;对于p=1,也称绝对可积。(注意f(x)是可积的。
当且仅当|f(x)|是可积的,所以"可积"和"绝对可积"在勒贝格意义下等价。)术语p-可和也是一样的意义,常用于f是一个序列,而μ是离散测度的情况下。这些函数组成的L空间是泛函分析研究中的主要对象之一。
原函数存在和可积的区别
可积和原函数存在完全两个概念。可积但原函数不一定存在,原函数存在不一定可积,二者没有必然关系。3、可积的必要条件:函数f在[a,b]有界,则函数在[a,b]上必定有界;4、可积的充分条件:1)函数在[a,b]区间上连续,则在该区间上可积;2)若f在区间[a,b]上有有限个间断点的有界,则函数...
原函数存在和可积的区别
可积和存在原函数的区别在于存在原函数的话,就一定可积,用牛莱公式就可以计算出积分值,可积分就是能算面积,反常积分如果可能可积,但不存在原函数。可积函数是存在积分的函数。除非特别指明,一般积分是指勒贝格积分。否则,称函数为黎曼可积(也即黎曼积分存在),或者Henstock-Kurzweil可积等等。给...
原函数存在与函数可积这个怎么理解?
第一,两者绝对不等价,原函数存在不一定可积,譬如,F(X)的导数为f(x),但是f(x)是无界的,当然不可积,这样的例子是存在的,我手里有很多,建议数字符号不好输,我就不列举了。第2,可积不一定存在原函数,因为当f(x)有界,且存在有限个间断点是可积的,但是一旦这个间断点是第一类间断点...
请问函数可积与原函数存在的关系
可积和原函数存在完全两个概念。可积但原函数不一定存在,原函数存在不一定可积,二者没有必然关系。可积的充分条件:函数连续或函数在区间上有界且有有限个间断点。或函数在区间单调。原函数存在的充分条件:连续。另外函数含有第一类间断点,那么不存在原函数,含无穷型的间断点也不存在原函数。问题一...
可积与存在原函数有什么不同,它们的条件各是什么?
可积与存在原函数有计算方法和适用范围的区别。条件如下所示:存在原函数,就一定可积,用牛莱公式就可以计算出积分值,可积分就是能算面积,反常积分如果可能可积,但不存在原函数。注意事项:原函数存在定理为:若f(x)在[a,b]上连续,则必存在原函数。此条件为充分条件,而非必要条件。即若fx)...
可积和原函数存在的关系
可积性和原函数的存在是紧密相关的。一个函数在某个区间上可积意味着它在该区间上的定积分存在,而定积分可以通过求解函数的原函数在区间端点处的值之差来得到。因此,可积性是原函数存在的一个必要条件。这种关系反映了积分与导数之间的基本联系,为微积分学中的重要概念提供了理论基础。
函数可积不一定存在原函数吗?
函数可积不一定存在原函数。 因为这是两个概念,函数可积指的是函数的定积分存在,而函数存在原函数则是涉及不定积分的概念。一个函数,可以存在不定积分,而存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃...
可积与原函数存在
可积就是原函数存在,二者没有区别(在你要考虑的积分限上)。有许多函数比如sin(x^2)它其实是可积的(在任何一个区间上) 就是说原函数是存在的 但是它无法用初等函数表示出来 广义积分并不是一般意义下的积分,它是对积分限取极限后的那个极限值,就是说它是极限的极限(积分也是一种极限)。
〖原函数存在〗与〖可积〗的关系的问题请教
将存在原函数等同于"可积"的观点是错误的。存在原函数与能够求得不定积分是两个不同的概念。求不定积分的目标是将原函数表示为一个初等函数加上一个任意常数。即使一个函数具备原函数,但若该原函数并非初等函数,则该函数的不定积分仍被认为是“无法求得”。连续函数必定存在原函数,但连续函数的不...
可积与存在原函数的区别?
原函数相当于求一个不定积分。代入上下限后就是定积分。如果代入上下限的差的极限存在就可积了