数学题 求S=1+1/(1+2)+1/(1+2+3)+……+1/(1+2+3+4+……+n)=? 求过程 高二题 数列那一章的 谢谢

如题所述

第1个回答  2011-09-18
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+……+1/(1+2+3……+n)
= 1+1/[(1+2)×2÷2]+1/[(1+3)×3÷2]+……+1/[(1+n)×n÷2]——①
= 2/2+2/(1+2)×2+2/(1+3)×3+……+2/(1+n)×n——②
= 2×[1/2+1/2-1/3+1/3-1/4+……+1/n-1/(1+n)]——③
= 2×[1-1/(1+n)]
= 2×[n/(1+n)]
= 2n/(1+n)

注释:
①把分母等差数列写成简便形式
②分子和分母同时乘以2
③把分子2提出来做公因数
第2个回答  2011-09-18
先求分母的表达式,1+2+3+。。。+n=(1+n)n/2
1/(1+2+3+...+n)=2/n(1+n)=2[1/n-1/(n+1)]
然后S就马上可以算出来了本回答被提问者采纳
第3个回答  2011-09-18
1/(1+2+3+4+……+n)
= 2/[ n(n+1) ]
= 2[1/n - 1/(n+1) ]
因此相加得2(1/1 - 1/(n+1))
= 2n/(n+1)
第4个回答  2011-09-18
#include <stdio.h>
int main()
{
double s=0;
int n,t=0;
printf("请输入n\n");
scanf("%d",&n);
int i;
for(i=1;i<=n;i++)
{
t+=i;
s+=1.0/t;
}
printf("结果为:%f",s);
return 0;
}

求采纳!

数学题 求S=1+1\/(1+2)+1\/(1+2+3)+……+1\/(1+2+3+4+……+n)=? 求...
1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……+1\/(1+2+3……+n)= 1+1\/[(1+2)×2÷2]+1\/[(1+3)×3÷2]+……+1\/[(1+n)×n÷2]——① = 2\/2+2\/(1+2)×2+2\/(1+3)×3+……+2\/(1+n)×n——② = 2×[1\/2+1\/2-1\/3+1\/3-1\/4+……+1\/n-1\/(...

数学题解答器1+1\/(1+2) +1\/(1+2+3)+1\/(1+2+3+4)+……1\/(1+2+3+…20...
分母为:1+2+3+4+...+2011 通项为:n(n+1)\/2 所以每个分式为:1[n(n+1)\/2]=2\/n(n+1)=2[1\/n-1\/(n+1)]所以原式=2(1\/1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+...+1\/2012-1\/2013)=2(1-1\/2013)=2*2012\/2013 =4024\/2013 ...

数学问题:1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+………+1\/(1+2+3+...
自然数列前N项和1+2+3+……+N=N(N+1)\/2 所以这里就是求通项为2\/N(N+1)=2(1\/N - 1\/(N+1))的前N项和 所以S=2(1-1\/2 +1\/2-1\/3+……+1\/N -1\/(N+1))然后消去每一项的后一部分和下一项的前一部分 就有S=2(1-1\/(N+1))=2N\/(N+1)...

1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+…+n)这个怎么计算啊
所以Sn=1+[1\/(1+2)]+〔1\/(1+2+3)〕+[1\/(1+2+3+4)]+……+[1\/(1+2+3+……+n)]=2[1\/1-1\/2]+2[1\/2-1\/3]+2[1\/3-1\/4]+...+2[1\/n-1\/(n+1)]=2[1-1\/2+1\/2-1\/3+1\/3-1\/4+...+1\/(n-1)-1\/n+1\/n-1\/(n+1)]=2[1-1\/(n+1)]=2n\/(n+1...

数学计算。1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……+1\/(1+2+3+……+1...
因为1=1*2\/2 1+2=2*3\/2 ...1+2+3+4+...2003=2003*2004\/2 所以 1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+4+...2003)=2(1\/1 - 1\/2)+2(1\/2 -1\/3) +2(1\/3-1\/4)+...+2(1\/2003-1\/2004)=2-2\/2004 =2-1\/1002 =2003\/1002 ...

1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+4+...+10)=?
(问题可如下分析:通项公式为an=2\/[(1+n)*n],求sn,其中*代表乘号.该类问题可将an裂项为2\/[1\/n-1\/(n+1)],然后相加即可)1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+4+...+10)=2\/[(1+1)*1]+2\/[(1+2)*2]+2\/[(1+3)*3]+2\/[(1+4)*4]+......

...题目描述 题目内容:求s=1+(1+2)+…+(1+2+3+…+n)的值,其中n由键盘...
S=1(1+1)\/2+2(2+1)\/2+3(3+1)\/2+…+n(n+1)\/2--> 2S=1(1+1)+2(2+1)+3(3+1)+…+n(n+1)--> 2S=(1^2+2^2+3^2+…+n^2)+(1+2+3+…+n)--> 2S=n(n+1)(2n+1)\/6+n(n+1)\/2--> 2S=n(n+1)(2n+1)\/6+3n(n+1)\/6--> 2S=n(n+1)(2n+1...

...我们老师也不知道做。 1+1\/(1+2)+1\/(1+2+3)+……+
1+1\/(1+2)+1\/(1+2+3)+……+1\/(1+2+3+……+n)=2\/1×2 +2\/2×3+2\/3×4+...+2\/n(n+1)=2×[1\/1×2 +1\/2×3+1\/3×4+...+1\/n(n+1)]=2×【1-1\/2+1\/2-1\/3+1\/3-1\/4+...+1\/n-1\/(n+1)】=2×[1-1\/(n+1)]=2n\/(n+1)...

1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+…100)=
第二种:因为:1+2=2*3\/2 1+2+3=3*4\/2 1+2+3+4=4*5\/2 1+2+3+……+100=100*101\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+2006)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*...

数列求和 1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...+n)
+1\/(n+3)]∑1/(n+1)(n+2)(n+3)=1\/2{(1\/2-1\/3-1\/3+1\/4)+(1\/3-1\/4-1\/4+1\/5)+(1\/4-1\/5-1\/5+1\/6)+(1\/6-1\/7-1\/7+1\/8)+...+[1\/(n+1)-1\/(n+2)-1\/(n+2)+1\/(n+3)]} =1\/2{1\/2-1\/3-1\/(n+2)+1\/(n+3)} ...

相似回答
大家正在搜