∫ xarcsinx dx
= ∫ arcsinx d(x²/2)
= (1/2)x²arcsinx - (1/2)∫ x²/√(1 - x²) dx,x = sinz
= (1/2)x²arcsinx - (1/2)∫ sin²z/|cosz| * (cosz dz)
= (1/2)x²arcsinx - (1/2)∫ (1 - cos2z)/2 dz
= (1/2)x²arcsinx - (1/4)(z - 1/2*sin2z) + C
= (1/2)x²arcsinx - (1/4)arcsinx + (1/4)x√(1 - x²) + C
扩展资料:
分部积分:
(uv)'=u'v+uv'
得:u'v=(uv)'-uv'
两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx
即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式
也可简写为:∫ v du = uv - ∫ u dv
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
本回答被网友采纳