高中数学的四大思想是什么?请给高考例题

如题所述

数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合. 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决. 运用这一数学思想,要熟练掌握一 些概念和运算的几何意义及常见曲线的代数特征.应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数 列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线.以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决. 分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”.常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等. 分类讨论思想方法可以渗透到高中数学的各个章节,它依据一定的标准,对问题分类、求解,要特别注意 分类必须满足互斥、无漏、最简的原则.函数与方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应 用技巧多. 函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到:(1)深刻理解函数 f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等 式是中学数学的重要内容,具有丰富的内涵和密切的联系. 掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.转化与化归思想化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想. 转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题. 转 化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解 题过程的各个环节中. 转化有等价转化与不等价转化. 等价转化后的新问题与原问题实质是一样的. 不等价转 化则部分地改变了原对象的实质,需对所得结论进行必要的修正.
温馨提示:内容为网友见解,仅供参考
无其他回答

高中数学的四大思想是什么?请给高考例题
数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合. 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何...

高考数学常用思想有哪些呢?
数学四大思想:数形结合思想,转化思想,分类讨论思想,整体思想。八大数学方法:配方法,因式分解法,待定系数法,换元法,构造法,等积法,反证法,判别式法。以上是学习中常用的思想方法。这些都是学习数学的过程中,经常运用的。不同学习阶段,数学思想方法的运用也不同,侧重点各有差异。思想方法分类...

高中数学思想有那些?
数学四大思想:函数与方程、转化与化归、分类讨论、数形结合;函数与方程函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还...

高考数学常用思想有哪些呢?
1.函数与方程思想 函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问...

高中数学的思想方法有哪些?
高中数学的重要思想方法包括:函数与方程思想、数形结合思想、分类与整合思想、化归与转化思想、特殊与一般思想、有限与无限思想以及或然与必然思想。函数与方程思想是基础,它在研究数学各领域中发挥核心作用,高考对此有重点考察。数形结合思想强调数学的定量与定性结合,通过数到形和形到数的转换,考察解题...

高中数学解题思想以及方法
数学思想如:函数与方程思想,强调通过构造函数来解决问题;数形结合思想,将数和形结合,解决代数与几何问题;分类讨论思想,针对问题的不同情况,逐一分析处理。与基础知识相比,数学思想更注重理解和应用,它能让你的解题策略更为灵活,即使记忆减退,也能依赖于内在的思维方式。举例来说,配方法是通过...

高中数学的解题(思想)方法
高中数学合集百度网盘下载 链接:https:\/\/pan.baidu.com\/s\/1znmI8mJTas01m1m03zCRfQ ?pwd=1234 提取码:1234 简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

数学思想有哪些
通过数学思想的培养,数学的能力能才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。1.函数思想:把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。2.数形结合思想:“数无形,少直观,形无数,难入微”,利用“数形结合”可使所要研究的...

高中数学都应用了什么思想?
高中有两个思想最常用:一、数形结合;二,分类讨论。当然还有很多,如:换元思想、整体替换、转化与化归、函数与方程思想等等,当然这些思想一定要去理解和学以致用(做题时潜意识能想到),你可以去百度文库去搜下“高中数学思想”,(记住找个评价高点的文档下载下来慢慢看哦),你能想到用思想方法去...

高中有哪些重要的数学思想?
数形结合。将代数问题转化为图像。方程思想。利用方程解题。这是最重要的两个。

相似回答