二次函数有哪些性质?

能详细一点吗?
为什么呢?

二次函数

(三)综合测试

二. 重点、难点:

知道二次函数的意义。

自变量的取值范围及对所含系数的要求有哪些异同,在比较中掌握二次函数的定义。

象的有关技巧(y=ax2的关键点是顶点及关于y轴的对称点)。

本节的重点是二次函数的概念,正确画出y=ax2的图象,初步掌握二次函数的性质。

函数的增减性是教学的难点。

函数y=ax2的图象是一条关于y轴对称的曲线,这条曲线叫抛物线。

1. 会用描点法画出二次函数的图象。

2. 能利用图象或通过配方法确定抛物线的开口方向及对称轴、顶点的位置。

3. 会由已知图象上三个点的坐标求出二次函数的解析式。

对二次函数画图象,首先应了解二次函数的图象是抛物线,其关键点是它的顶点 抛物线与x轴有交点),然后依对称性,再参照y=ax2的图象,就可迅速画出原二次函数的图象。

在学习二次函数的性质时,应结合函数的图象,对比各种不同形式及相同形式但所含常数不同时的各种情况,归纳总结出一定的规律,从而更好地理解函数的性质。

在函数性质的教学中,应充分调动学生的积极性,引导他们从增减性、对称性、最值、截距几个方面去发现性质,然后再逐渐条理化。

学会函数知识的应用,从而加强技能的训练和能力的培养。

用描点法画二次函数的图象,用一般式来研究二次函数的性质,求二次函数的解析式,是本节的重点。

怎样移动便得到另一个图象;由二次函数的图象得出二次函数的性质,这是一个数形结合的问题,以上三个问题是本节中的难点。

【典型例题】

解:列两个表

分别描点画图(如图13-10)。

解:列表

描点画图(如图13-11)。

一般地,抛物线y=ax2的对称轴是y轴,顶点是原点,当a>0时,抛物线y=ax2的开口向上,当a<0时,抛物线y=ax2的开口向下。

解:

〖知识小结〗

1. 函数y=ax2的图象是一条抛物线,它的对称轴是y轴,顶点是原点。当a>0时,抛物线y=ax2在x轴的上方,在y轴的左右两侧同时向上无限延伸;当a<0的时候,抛物线y=ax2在x轴的下方,在y轴的左右两侧同时向下无限延伸。

2. 为了描点画出二次函数y=x2的图象,先要列出函数的对应值表,如何选取自变量x的值呢?不妨以零为中心,均匀选取一些便于计算的x值。

解:列表

分别描点画图(如图13-12)。

解:列表

分别描点画图(如图13-13)。

了一个单位。

例3. 在同一直角坐标系中,画出下列函数的图象。

解:列表

分别描点画图(如图13-14)。

通过例1、例2、例3可知:

(1)a>0时开口向上,a<0时开口向下;

(2)对称轴是直线x=h;

(3)顶点坐标是

解:

对称轴为x=-3,顶点坐标为(-3,8)。

求这个函数的解析式,并求图象的顶点坐标,对称轴。

解:根据题意,有

把<1>代入<2>、<3>,得:

例6. 已知二次函数的顶点是(1,3)且它经过坐标原点,求这个函数的解析式。

分析:

解:

〔引申〕二次函数能解决哪些实际问题呢?我们看下面例题:

例7. 利用9m长的木料做一“日”字形窗框,它的长和宽各为多少时,面积最大?

分析:为了求出当长为多少时,面积最大,必须先列出y用长x表示的函数式,然后再利用有关函数图象的最高点(函数的最大值)来解决问题。

解:

〖知识小结〗

点、找到对称轴,根据a再考虑抛物线的开口方向。最后根据抛物线关于对称轴对称的特点,再选少数便于计算便于找的点,最后描点绘图。

(1)提出二次项系数;

(2)在提出二次项系数以后的式子,配上一次项系数一半的平方,同时减去该平方;

(4)将提出的二次项系数乘回去。

3. 在本节的学习过程中,经常需要观察图象的特点以及不同图象之间的相互关系,这正是培养学生观察力、理解力的好机会,应启发学生各抒己见,展开讨论,以得出比较满意的结论。

【模拟试题】

一. 填空题(每小题10分,共40分)

1. 函数 叫做x的__________,其中a、b、c是_________,且a_______,x是_______,它的图象叫______________。

2. 二次函数 的图象是抛物线,它的对称轴是_________,顶点是_________,当 时,抛物线 的开口向_________,当a<0时,抛物线 的开口向_________。

3. 抛物线 的开口_________,顶点坐标为_________,对称轴是_________,当x=_________时,有最_________点,其坐标是_________,当x_________时,y随x的增大而增大;当x_________时,y随x的增大而减小。

4. 二次函数 的抛物线开口方向是_________,顶点坐标为_________,对称轴是_________。当x=_________时,有最_________点,其坐标是_________;若使y随x的增大而增大,则x_________。若使y随x的增大而减小,则图象在对称轴的_________。

二. 解答题(每小题15分,共60分)

1. 先填表,再在直角坐标系中画出下列函数的图象。

x
-4
-3
-2
-1
0
1
2
3
4

2. 下列函数中,哪些是一次函数?哪些是二次函数?为什么?

(1) (2)
(3) (4)
(5) (6)
(7) (8)
3. 当m为何值时, 是二次函数,且图象的开口向下。

4. 已知抛物线 的开口向下,下列各点中,在抛物线上的点有哪些?为什么?

一. 填空题(每小题6分,共48分)

1. 抛物线 与 形状__________,位置__________。当a>0时,抛物线的开口__________;当a<0时,开口__________。

2. 抛物线 的对称轴是直线__________,顶点坐标是__________。

3. ,配方后可得到y=__________。因此,抛物线 的对称轴是__________,顶点坐标是__________。

4. 抛物线 向上平移两个单位,则抛物线的解析式为__________,它的顶点坐标为__________,它的对称轴方程为__________。

5. 抛物线 的图象向右平移2个单位,那么抛物线的解析式为__________,顶点为__________,对称轴为__________。

6. 如果函数 的图象过 ,则c的值为__________。

7. 如果函数 的图象的顶点的横坐标为1,则a的值为__________。

8. 把二次函数 化成 的形式,结果是__________。

二. 解答题(每题13分,共52分)

1. 在同一直角坐标系内画出下列二次函数的图象:

观察三条抛物线,并分别写出它们的开口方向,对称轴、顶点的坐标。

2. 说出下列函数图象的开口方向、对称轴及顶点坐标:

(1) (2)
(3) (4)
3. 利用配方法将二次函数 写成 的形式,写出抛物线开口方向、顶点坐标、对称轴方程,并画出图象。

4. 已知函数 是一个二次函数,并且知道它的图象通过A(0,1),B(1,3),C(-1,1)三点,写出这个二次函数的解析式。

(三)综合测试

一. 填空题(每小题6分,共48分)

1. 函数 的自变量x的取值范围是__________。

2. 点( )关于x轴的对称点坐标是__________,关于y轴对称点的坐标是__________,关于原点的对称点的坐标是__________。

3. 第二、四象限角平分线上的点的坐标特征是__________。

4. y=__________x的图象是一条过原点及一点( )的直线,y随x的增大而__________,图象位于__________象限。

5. 函数 ,当 ,函数值是__________,当x=______时,函数值是0。

6. 抛物线 的开口方向是__________,顶点坐标为__________,对称轴是__________。

7. 抛物线 ,当x=__________时有最__________点,y=__________。

8. 函数 的图象,可由函数 的图象向__________平移__________个单位,再向__________平移__________个单位得到。

二. 选择题(每题6分,共12分)

1. 已知函数 ( ),则它的大致图象是( )

(第二(1)题)

2. 无论x取任何实数,函数 的值总是( )

A. 非负数 B. 负数 C. 正数 D. 不能确定

三. 解答题(每题10分,共40分)

1. 已知一次函数的图象与y轴交点的纵坐标 ,且直线过点(-2,3)。求函数解析式,画出函数图象;直线与坐标轴的交点坐标,当x取何值时y>0?求直线被坐标轴截得的线段长及截得的三角形面积;判断点(3,-7)是否在直线上?

2. 已知二次函数 ,当该二次函数图象经过点(3,6)时,确定m的值,并写出这个二次函数的解析式,求此二次函数与x轴的两个交点A、B及抛物线的顶点C所组成的三角形的面积。

3. 已知二次函数的图象经过点A(1,2)、B(0,-1)、C(6,7)三点,求它的解析式。

4. 求顶点为(1,4)并且过点(2,3)的抛物线的解析式。

【试题答案】

一.

1. 二次函数,常数, ,自变量,抛物线

2. y轴,原点,向上,向下

3. 向上,(0,0), ,0,低,(0,0),
提示: 的图象应是以顶点为原点,关于y轴对称,开口向上的抛物线

4. 向下,(0,0), ,0,高,(0,0), ,右侧

提示:为了正确解答此题,审题后不妨先画一草图,根据图形回答问题,有助于解题。

二.

1. (略)

2. (1),(2),(7)是二次函数,(3),(5),(8)是一次函数。因为(1)(2)(7)中的函数符合 的形式(其中a、b、c是常数, )。而(3)(5)(8)中的函数符合 的形式(其中k、b是常数, ),而(4)和(6)既不符合二次函数的定义,也不符合一次函数的定义,因此不是二次函数,也不是一次函数。

3.
提示:因为 是二次函数,所以 ,且 ,又因为图象的开口向下,所以 。若 ( )。

4. 在抛物线上的点有C点、D点、E点和F点,因为抛物线 的开口向下,说明函数 是二次函数,且 ,所以, 且 ,则 ,原函数为 。而其中C、D、E、F点中的x、y满足 ,因此,此四点在抛物线上。

一.

1. 相同,不同,向上,向下

2.
3.
4.
5. 抛物线 的图象向右平移2个单位,那么解析式为 ,顶点为(2,0),对称轴为
6. 如果函数 的图象过 ,则C的值为 。

7. -2

提示:如果函数
8.
二.

1. 图象略, 开口向上,对称轴 ,顶点坐标(-1,0); 开口向上,对称轴 ,顶点坐标(0,0); 开口向上,顶点坐标(0,1),对称轴 。

2. (1) 的开口向下,对称轴为 ,顶点坐标(3,7)。

(2) 。

(3) 。

(4) 开口向上,对称轴为 ,顶点坐标
3. ,开口向上,顶点坐标 ,对称轴为 ,图象略。

4.
分析:二次函数的一般形式是 ,要确定这个函数,必须知道二次三项式里三个系数a、b、c的值。现在已知A、B、C三点在图象上,它们的坐标适合上面的方程,因此,可以列出关于a、b、c的三元一次方程组

解这个三元一次方程组就可以确定a、b、c

(三)综合测试

一.

1.
提示:要使 有意义,则 ,由于 是分母,

2.
3.
提示:可画一草图,从图中可知,直线上任一点的横坐标与纵坐标绝对值相等,符号相反,即互为相反数: 。

4. ,减小,二、四

5. 3,1或3

6. 开口向下,
7.
8. 右,2,下,5

二.

1. D

提示:

2. C

提示:
三.

1. 函数解析式 ,函数图象如下,直线与坐标轴交点的坐标(0,-2)、

直线AB是被坐标轴截得的线段长,



2.
提示:把点的坐标(3,6)代入 中,得到 ,

再将 代入原二次函数中得到
当 时,求得

顶点的纵坐标为

3.
提示:根据题意,有 ,解出a、b、c分别为

4.
提示:根据题意将 中,得到
又因为抛物线经过(2,3)点,将 , ,代入 中,可求出 ,
温馨提示:内容为网友见解,仅供参考
第1个回答  2006-01-28
回答的很好,中间有句:
切,你当我是妹妹过吗?我从来没见过像你这样的哥呆
是什么意思?

二次函数的性质有哪些
二次函数的性质包括以下几点:开口方向、对称轴、顶点、判别式以及最值性质。一、开口方向 二次函数的图像是一条抛物线,其开口方向由二次项系数决定。若系数为正,则抛物线开口向上;若系数为负,则抛物线开口向下。例如,函数y=x^2的开口方向是向上。二、对称轴 二次函数的对称轴是一条垂直于x轴的...

二次函数有几个性质?
二次函数的五大性质如下:1、开口方向:a>0时,开口向上;a<0时,开口向下。2、顶点坐标:(0,0)a>0时,(0,0)为最低点;a<0时,(0,0)为最高点。3、对称轴:y轴(直线x=0)。4、增减性:当a>0,且x>0或a<0,且x<0时,y随x的增大而增大(同增);当a>0,且x...

二次函数的性质和图像
1、二次函数的性质:特别地,二次函数(以下称函数)y=ax2+bx+c(a≠0),当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax2+bx+c=0(a≠0)此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。2、二次函数的图像:...

二次函数的图象有哪些性质?如何确定它的方向,对称轴和顶点坐标_百度知 ...
二次函数图象具有以下性质:开口方向、对称轴及顶点坐标。开口向上,对称轴为x=2,顶点坐标为(2,5)。y=2(x-1)^2-3为二次函数,开口方向向上,对称轴为x=1,顶点坐标为(1,-3)。y=3(x-1)^2-1同样为开口向上的二次函数,对称轴位于x=1,顶点坐标是(1,-1)。若二次函数开口向下,以y=...

二次函数的定义和性质
二次函数的定义和性质如下:一、定义:一般地,把形如(a、b、c是常数)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。二、性质:1、二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时...

二次函数函数性质
二次函数是描述抛物线特性的数学模型,其核心特性如下:1. 抛物线是轴对称图形,其对称轴由公式x = -b\/2a确定,这个轴与抛物线唯一交点P构成顶点。若b=0,对称轴将是y轴(即x=0)。2. 抛物线的顶点P的坐标为(-b\/2a, (4ac-b^2)\/4a)。当顶点在y轴上,即-b\/2a=0;当判别式Δ=b^2-4ac...

二次函数的性质有哪些?
二次函数的性质如下:1. 对称性:二次函数的图像关于垂直方向的直线 x = -b\/(2a) 对称。也就是说,对于给定的二次函数图像,在该直线左右两侧的点的y值完全相同。2. 开口方向:二次函数的开口方向由a的正负决定。当a大于零时,抛物线开口向上;当a小于零时,抛物线开口向下。3. 零点和轴对称点...

二次函数性质有哪些
顶点坐标、对称性、增减性等。1、顶点坐标:二次函数的顶点坐标为(-b\/2a,f(-b\/2a)),f(x)表示二次函数的表达式。2、对称性:二次函数关于对称轴对称,即对称轴上的任意一点关于对称轴上的另一点的纵坐标相等。3、增减性:当a>0时,二次函数在对称轴左侧递减,在对称轴右侧递增;当a<0时,...

二次函数的性质与图像
二次函数是一种常见的函数形式,具有特定的性质和图像特征。1、 二次函数的一般形式 二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c是实数且a不为零。a决定了二次函数的开口方向,正值表示开口向上,负值表示开口向下。2、 二次函数的顶点 二次函数的顶点就是图像的最高点开口向下或最...

二次函数的性质是什么?
二次函二次函数的性质:1.二次函数的图像是抛物线,抛物线是轴对称图形。对称轴为直线x=-b\/2a。2.二次项系数a决定抛物线的开口方向和大小。3.一次项系数b和二次项系数a共同决定对称轴的位置。4.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)。当c>0时,图像与y轴正半轴相交。当c<0时...

相似回答