x+y=1 x^ +y^ =2,求x^5+y^5

是 x^2 +y^ 2=2

第1个回答  2011-08-09
(x+y)²=x²+y²+2xy=1,xy=-1/2,(x+y)³=x³+y³+3xy(x+y)=1,x³+y³=5/2,(x²+y²)²=4,
x^4 +y^4=7/2,(x+y)(x^4 +y^4)=x^5+y^5+xy(x³+y³),x^5+y^5-1/2*5/2=7/2,x^5+y^5=19/4
第2个回答  2011-08-10
x+y=1
x^2+y^2=2 (1)

(x+y)^2=1
x^2+2xy+y^2=1
xy=[1-(x^2+y^2)]/2=-1/2 (2)

(x+y)^3=1
x^3+y^3+3xy(x+y)=1
x^3+y^3=1-3xy(x+1)=1+3/2=5/2 (3)

(1)*(3)
x^5+y^5+(xy)^2(x+y)=5
x^5+y^5=5-(xy)^2(x+1)=5-1/4=19/4本回答被网友采纳
第3个回答  2011-08-09
此题无解,2元2次,不可能

x+y=1 x^ +y^ =2,求x^5+y^5
(x+y)²=x²+y²+2xy=1,xy=-1\/2,(x+y)³=x³+y³+3xy(x+y)=1,x³+y³=5\/2,(x²+y²)²=4,x^4 +y^4=7\/2,(x+y)(x^4 +y^4)=x^5+y^5+xy(x³+y³),x^5+y^5-1\/2*5\/2=7\/2,x^5+y^5=19\/4 已赞过 已踩过< 你对这个回答的评价是? ...

设x+y=1,x^2+y^2=2,求x^7+y^7的值.
xy=[1-(x^2+y^2)]\/2=-1\/2 所以x^4+y^4=(x^2+y^2)^2-2(xy)^2=4-2*(-1\/2)^2=7\/2 所以x^7+y^7 =(x^3+y^3)(x^4+y^4)-x^3y^4-x^4y^3 =(x^3+y^3)(x^4+y^4)-(xy)^3(x+y)=1*7\/2-(-1\/2)^3*1 =29\/8 ...

若x+y=1,x²+y²=2,求x^7+y^7=?
因为x+y=1,x^2+y^2=2,又因为x^2+y^2=(x+y)^2-2xy=1^2-2xy=2,所以2xy=-1,所以xy=-1\/2,所以x^3+y^3=(x+y)(x^2-xy+y^2)=1*(2-xy)=1*[2-(-1\/2)]=2.5,x^4+y^4=(x^2+y^2)^2-2x^2y^2=2^2-2*(-1\/2)^2=3.5,所以x^7+y^7=(x^3+y^3)(x...

x+y=4 xy=2 x^5+y^5=? 急!!详细过程
解:x^2+y^2=(x+y)^2-2xy=4^2-2*2=12 x^3+y^3=(x+y)(x^2-xy+y^2)=4*(12-2)=40 所以:x^5+y^5 =(x^2+y^2)*(x^3+y^3)-x^2*y^2*(x+y)=(x^2+y^2)*(x^3+y^3)-(xy)^2*(x+y)=12*40-2^2*4 =480-16 =464 ...

已知X+Y=1 ,X*X+Y*Y=2 ,求x的七次方与y的七次方的和
(X+Y)(X^3+Y^3)=X^4+Y^4+XY(X^2+Y^2)=X^4+Y^4+2XY=5\/2 => X^4+Y^4=7\/2 ...可归纳出来:X^n+Y^n=X^(n-1)+Y^(n-1)-XY[X^(n-2)+Y^(n-2)]所以:X^5+Y^5=7\/2+1\/2*5\/2=19\/4 X^6+Y^6=19\/4+1\/2*7\/2=26\/4=13\/2 X^7+Y^7=13\/2+1...

X+Y=1,X平方+Y平方=2,求X,Y
X+Y=1 所以 (X+Y)^2=1 x^2+y^2+2xy=1 x^2+y^2=2 所以2xy=-1 x+y=1 xy=-1\/2 这个你再解不出,我只能说你是大哥了

已知x+y=1,x³+y³=7,求x的五次方+y的五次方=?
xy=-2 x²+y²=1-2xy=5 两边平方 x^4+2x²y²+y^4=25 x^4+y^4=25-2(xy)²=17 (x³+y³)²-(x+y)(x^5+y^5)=x^6+2x³y³+y^6-x^6-xy^5-x^5y-y^6 =2(xy)³-xy(x^4+y^4)=-16+2*17 =18 即...

x+y=1 x的平方+y的平方=2 问x的四次方+y的四次方是多少
分类: 教育\/学业\/考试 >> 学习帮助 解析:因为x+y=1,x^2+y^2=2,所以2xy=-1.xy =-1\/2,x^4+y^4=(x^2+y^2)^2-2x^2y^2=4-1\/2=7\/2

已知x+y=1,x+y=三分之一,求x的五次方+y的五次方的值,要有解题过程,最好...
因为x+y=1 所以 (x+y)^2=1 x^2+y^2+2xy=1 又x+y=(x+y)(x^2-xy+y^2)=1\/3 x^2-xy+y^2=1\/3 所以xy=2\/9 因为(x+y)(x^2-xy+y^2)=x^5+y^5+x^2y^2(x+y)-xy(x+y)=1\/9 所以x^5+y^5=1\/9-4\/81+2\/9×1\/3=11\/81 ...

已知x+y=1,x^3+y^3=1\/3,求 x^5+y^5
答:x^3+y^3 =(x+y)(x^2-xy+y^2)=x^2-xy+y^2=1\/3 (x+y)^2=x^2+2xy+y^2=1 所以相减得xy=2\/9 x^5+y^5 =(x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)=x^4-x^3y+x^2y^2-xy^3+y^4 =(x^2-xy+y^2)^2+x^3y+xy^3-2x^2y^2 =1\/9+xy(x^2-xy+y^2)...

相似回答
大家正在搜