数学家的趣味小故事

如题所述

1、数字趣联
宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说:"我出一联,你们若对得上,我就让你们进考场."考官的上联是:一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟.
  苏东坡对出的下联是:十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中.
  考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致.

2、点错的小数点
学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里.
  美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元.
  点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略.

3、二十一世纪从哪年开始?
世纪是计算年代的单位,一百年为一个世纪.
  第一世纪的起始年和末尾年,分别是公元1年和公元100年.常见的错误是有人把起始年当作是公元零年,这显然不符合逻辑和我们的习惯,因为在一般情况下,序数的计算是从“1”开始的,而不是从“0”开始的。而正是这个理解上的错误,所以才导致了世纪末尾年为公元99年的错误认识,这也是错把1999年当作是二十世纪末尾年,错把2000年当作是二十一世纪起始年的原因.因为公元计数是序数,所以应该从“1”开始,21世纪的第一年是2001年.

4、蒲丰试验
一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。
  蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。

5、数学魔术家
1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。
  工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。
  这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。

6、工作到最后一天的华罗庚
华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。他特别注意理论联系实际,走遍了20多个省、市、自治区,动员群众把优选法用于农业生产。
  记者在一次采访时问他:“你最大的愿望是什么?”
  他不加思索地回答:“工作到最后一天。”他的确为科学辛劳工作的最后一天,实现了自己的诺言。
温馨提示:内容为网友见解,仅供参考
第1个回答  2020-05-11
20世纪最杰出的数学家之一的
冯·诺依曼
.众所周知,1946年发明的
电子计算机
,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.
伽罗华
生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
阿基米德
公元前287年
出生在
意大利半岛
南端
西西里岛

叙拉古
。父亲是位数学家兼天文学家。
阿基米德
从小有良好的家庭教养,11岁就被送到当时希腊文化中心的
亚历山大城
去学习。在这座号称"智慧之都"的名城里,
阿基米德
博阅
群书,汲取了许多的知识,并且做了
欧几里得
学生埃拉托塞和
卡农
的门生,钻研《
几何原本
》。
祖冲之
在数学上的杰出成就,是关于
圆周率
的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,
刘徽
提出了计算
圆周率
的科学方法--"
割圆术
",用圆内接
正多边形
的周长来逼近
圆周长
.刘徽计算到圆内接96边形,
求得π=3.14,并指出,内接
正多边形
的边数越多,所求得的π值越精确.
祖冲之
在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率
,取为密率,其中取六位小数是3.141929,它是分子
分母
在1000以内最接近π值的分数.
祖冲之
究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"
割圆术
"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.
祖冲之
计算得出的密率,
外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"
祖率
".
塞乐斯生于
公元前624年
,是古希腊第一位闻名世界的
大数学家
。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了
古埃及人
在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王
阿美
西斯钦羡不已。
第2个回答  2011-09-03
十六世纪,随著各种数学符号的相继出现,特别是法国数学家韦达创
立了较系统的表示未知量和已知量的符号以后,"含有未知数的等式"

这一专门概念出现了,当时拉丁语称它为"aequatio",英文为"equation".

十七世纪前后,欧洲代数首次传进中国,当时译"equation"为"相等式.

由於那时我国古代文化的势力还较强,西方近代科学文化未能及时

在我国广泛传播和产生较的影响,因此"代数学"连同"相等式"等这

些学科或概念都只是在极少数人中学习和研究.

十九世纪中叶,近代西方数学再次传入我国.1859年,李善兰和英国

传教士伟烈亚力,将英国数学家德.摩尔根的<代数初步>译出. 李.伟

两人很注重数学名词的正确翻译,他们借用或创设了近四百个数

学的汉译名词,许多至今一直沿用.其中,"equation"的译名就是借

用了我国古代的"方程"一词.这样,"方程"一词首次意为"含有未知

数的等式.

1873年,我国近代早期的又一个西方科学的传播者华蘅芳,与英国传

教士兰雅合译英国渥里斯的<代数学>,他们则把"equation"译为"方程

式",他们的意思是,"方程"与"方程式"应该区别开来,方程仍指<九章

算术>中的意思,而方程式是指"今有未知数的等式".华.傅的主张在

很长时间裏被广泛采纳.直到1934年,中国数学学会对名词进行一审

查,确定"方程"与"方程式"两者意义相通.在广义上,它们是指一元n次

方程以及由几个方程联立起来的方程组.狭义则专指一元n次方程.

既然"方程"与"方程式"同义,那麼"方程"就显得更为简洁明了了.

(本文摘自九章出版社之"数学诞生的故事")
第3个回答  2011-09-02
瑞士数学家欧拉早年曾受过良好的神学教育,成为数学家后在俄国宫廷供职。 有科尔伯恩则在数学上表现出神奇的天才,小时候,有人问他4294967297是否是素数
第4个回答  2011-09-04
我是一个叫晶晶的女孩,前几天,我晚自习回家,被一辆大卡车撞死了司机将我的尸体抛入了路径边的小河里,然后逃走了,你看见了这条消息后 ,请将她发给4个论坛,如果没有发,你的妈妈会在1个月后被车撞死,你的爸爸会得绝症,如果你照着上面做了,在5天后,你喜欢的人也会喜欢你,对不起大家不无意中看评论看 到了 这个吓死我了。不管是真是假我都害怕!所以只能乱发了`!对不起啊`!我真不想害人的
相似回答