已知a=2减根号3,化简求值1/ab+1/(a+1)(b+1)+……+1/(a+2009)(b+2010)的值。

如题所述

没有b情况?追问

a=1,b=2

追答

原式=1/2+1/2*3+1/3*4+......+1/2010*2011 【1/n*(n+1)]=1/n-1/(n+1)】
=1/2+(1/2-1/3)+(1/3-1/4)+......+(1/2010-1/2011) 【两项两项的抵消。。】
=1-1/2011
=2010/2011

温馨提示:内容为网友见解,仅供参考
无其他回答

1\/ab+1\/(a+1)(b+1)+1\/(a+2)(b+2)+、、+1\/(a+2010)(b+2010)的值(|ab-2...
所以 |a-2|+(b-3)^2=0 从而 a-2=0,b-3=0 所以 b=3,a=2 1\/ab+1\/(a+1)(b+1)+1\/(a+2)(b+2)+、、+1\/(a+2010)(b+2010)=1\/2*3+1\/3*4+...+1\/2012*2013 =1\/2-1\/3+1\/3-1\/4+...+1\/2012-1\/2013 =1\/2-1\/2013 =2011\/4026 ...

已知a=2+根号3,b=2-根号3求(a+1\/b)(b+1\/a)
a+b=4, ab=2-3=1 (a+1\/b)(b+1\/a)=(ab+1)(ab+1)\/ab =(1+1)(1+1)\/1 =4

初一数学:1\/ab+1\/(a+1)(b+1)+1\/(a+2)(b+2)+...+1\/(a+2008)(b+2008)=...
结果为2009\/2010。上式=1\/2+1\/6+1\/12+...+1\/2010×2009,有前面计算得:1\/2+1\/6=2\/3,2\/3+1\/12=3\/4由此可得:分母应该是a+2008,分子应该是a+2008-1,即2009\/2010.

...b满足√(a-1)+√(b-2)=0,求1\/ab+1\/(a+1)(b+1)+1\/(a+2)(b+2)+...
由题的a=1,b=2 所以b=a+1 1\/(a+n)-1\/(b+n)=【b+n-(a+n)】\/(a+n)(b+n)=(b-a)\/(a+n)(b+n)=1\/(a+n)(b+n)所以 1/ab+1\/(a+1)(b+1)+1\/(a+2)(b+2)+……+1\/(a+2009)(b+2009)=1/ab+1\/(a+1)-1\/(b+1)+1\/(a+2)-1\/(b+2)+...+1\/(...

若a=1 b=2,则1\/a+b+1\/(a+1)(b+1)+...+1\/(a+2009)(b+2009)的值是?
1\/a+b+1\/(a+1)(b+1)+...+1\/(a+2009)(b+2009)=1\/3+1\/2*3+1\/3*4+1\/4*5+...+1\/2010*2011 =1\/3+(1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+...+1\/2010-1\/2011)=1\/3+1\/2-1\/2011 =10049\/12066 >>>注楼主1\/a+b是否打错,若是1\/ab结果要简单....

计算:1\/ab+1\/(a+1)(b+1)+1\/(a+2)(b+2)+...+1\/(a+1997)(b+1997),a=2...
1\/(2*3)+1\/(3*4)……+1\/(1998*1999)这个没有问题 所以,根据一个公式:1\/a*(a+1)=1\/a - 1\/(a+1)这个你可以自己验证的哦!所以原试写成1\/1 -1\/2 +1\/2 -1\/3 + 1\/3 -1\/4……+1\/1998 -1\/1999,可以约掉了(这个过程你自己写在纸上会更清楚,只剩...

若根号a-1+根号ab-2=0.求1\/ab+ 1\/(a+1)(b+1)+ 1\/(a+2)(b+2)+...+...
根号a-1+根号ab-2=0 a-1=0,ab-2=0 a=1,b=2 1\/ab+ 1\/(a+1)(b+1)+ 1\/(a+2)(b+2)+...+ 1\/(a+2009)(b+2009)=1\/1*2+1\/2*3+1\/3*4+...+1\/2010*2011 =(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/2010-1\/2011)=1-1\/2011 =2010\/2011 ...

...a,b满足√(a-1)+√(b-2)=0,求1\/ab+1\/(a+1)(b+1)+1\/(a+2)(b+2)+...
第一个条件说明 a为1 b为2,然后变成1\/1*2+1\/2*3+...+1\/2015+2016 1\/1*2又等于1-1\/2,1\/2*3等于1\/2-1\/3 原式变成1-1\/2+1\/2-1\/3+...+1\/2015-1\/2016 加减消掉最后结果是1-1\/2016=2015\/2016 希望你能看懂 应该对的 ...

已知;a=1,b=2,求1\/ab+1\/(a+1)(b+1)+1\/(a+2)(b+2)+……1\/(a+2008)(b...
先代进去,发现是 1\/1*2+1\/2*3+1\/3*4+……+1\/2009*2010 又发现 1\/1*2=1-1\/2 1\/2*3=1\/2-1\/3 1\/3*4=1\/3-1\/4 ……所以 1\/2009*2010=1\/2009-1\/2010 全部代进去 很多的都正负抵消,就剩下 1-1\/2010=2009\/2010

...式的值:1\/ab+1\/(a+1)(b+1)+1\/(a+2)(b+2)+……1\/(a+2004)(b+2004...
因为|ab-2|和|a-1|互为相反数,所以二者都为0,推出a=1,b=2 所以原式=1\/(1*2)+1\/(2*3)+...+1\/(2005*2006)=1-1\/2+1\/2-1\/3+...+1\/2005-1\/2006 (约去中间项)=1-1\/2006 =2005\/2006 这一类题目都是这么用拆项法解。

相似回答
大家正在搜