常见16个定积分公式

如题所述

1、∫x^ndx=x^(n+1)/(n+1) +C, 其中n≠-1.
2、∫1/xdx=ln|x|+C, 即当n=-1时的幂函数类型.
含有一次二项式类型有如下几个基本公式:
3、∫x/(a+bx)dx=(bx-aln|a+bx|)/b^2+C.
4、∫x/(a+bx)^2dx=(a/(a+bx)+ln|a+bx|)/b^2+C.
5、∫x^2/(a+bx)dx=(-bx(2a-bx)/2+a^2ln|a+bx|)/b^3+C.
6、∫x^2/(a+bx)^2dx=(bx-a^2/(a+bx)-2aln|a+bx|)/b^3+C.
7、∫x^2/(a+bx)^3dx=(2a/(a+bx)-a^2/(2(a+bx)^2)+ln|a+bx|)/b^3+C.
8、∫1/(x(a+bx))dx=ln|x/(a+bx)| /a+C.
含有二次二项式的平方和差类型有如下的基本公式:(其中结果出现反三角函数的也可以归为反三角函数类型)
9、∫1/(a^2+x^2)dx=arctan(x/a) /a+C. 特别地,当a=1时,∫1/(1+x^2)dx=arctanx+C.
10、∫1/(x^2-a^2)dx= -∫1/(a^2-x^2)dx= ln|(x-a)/(x+a)| /(2a)+C.
11、∫1/根号(a^2-x^2)dx= arcsin (x/a)+C. 特别地,当a=1时,∫1/根号(1-x^2)dx= arcsinx +C.
12、∫1/(x根号(x^2-a^2))dx= arccos (a/x) /a+C. 特别地,当a=1时,∫1/(x根号(x^2-1))dx= arccos(1/x)+C.
三角函数类型不定积分公式有很多,以下列举出最常见的,它们都是成对出现的:
13、∫sinxdx=-cosx+C;∫cosxdx=sinx+C.
14、∫(sinx)^2dx=(x-sinxcosx)/2+C;∫(cosx)^2dx=(x+sinxcosx)/2+C.
15、∫xsinxdx=sinx-xcosx+C;∫xcosxdx=cosx+xsinx+C.
16、∫tanxdx=-ln|cosx|+C;∫cotxdx=ln|sinx|+C.
17、∫(tanx)^2dx=-x+tanx+C;∫(cotx)^2dx=-x-cotx+C.
18、∫secxdx=ln|secx+tanx|+C; ∫cscxdx=ln|cscx-cotx|+C.
19、∫(secx)^2dx=tanx+C;∫(cscx)^2dx=-cotx+C.
同样也有反三角函数类型的不定积分公式:
20、∫arcsinxdx=xarcsinx+根号(1-x^2)+C;∫arccosxdx=xarccosx-根号(1-x^2)+C
21、∫arctanxdx=xarctanx-ln(1+x^2) /2+C;∫arccotxdx=xarccotx+ln(1+x^2) /2+C.
22、∫arcsecxdx=xarcsecx-ln|x+根号(x^2-1)|+C;∫arccscxdx=xarccscx+ln|x+根号(x^2-1)|+C.
最后是指数函数和对数函数形式的不定积分公式:
23、∫a^xdx=a^x /lna+C, 特别地,当a=e时,∫exdx=ex+C.
24、∫lnxdx=x(lnx-1) +C.
温馨提示:内容为网友见解,仅供参考
无其他回答

定积分公式有哪几个?
1、∫kdx=kx+C(k是常数)。2、∫xdx=+1+C,(≠1)+1dx。3、∫=ln|x|+Cx1。4、∫dx=arctanx+C21+x1。5、∫dx=arcsinx+C21x。6、∫cosxdx=sinx+C。7、∫sinxdx=cosx+C。8、∫sec∫csc2xdx=tanx+Cxdx=cotx+C2。9、∫secxtanxdx=secx+C。10、∫cscxcotxdx=cscx+C。11、∫axdx=...

定积分的公式?
定积分的求法如下:

定积分计算公式是什么?
积分基本公式 1、∫0dx=c 2、∫x^udx=(x^u+1)\/(u+1)+c 3、∫1\/xdx=ln|x|+c 4、∫a^xdx=(a^x)\/lna+c 5、∫e^xdx=e^x+c 6、∫sinxdx=-cosx+c 7、∫cosxdx=sinx+c 8、∫1\/(cosx)^2dx=tanx+c 9、∫1\/(sinx)^2dx=-cotx+c ...

常见16个定积分公式
17、∫(tanx)^2dx=-x+tanx+C;∫(cotx)^2dx=-x-cotx+C.18、∫secxdx=ln|secx+tanx|+C; ∫cscxdx=ln|cscx-cotx|+C.19、∫(secx)^2dx=tanx+C;∫(cscx)^2dx=-cotx+C.同样也有反三角函数类型的不定积分公式:20、∫arcsinxdx=xarcsinx+根号(1-x^2)+C;∫arccosxdx=xarccosx-根号(...

定积分的应用公式总结如下?
定积分的应用公式总结如下:1、∫kdx=kx+c(K是常数),∫xndx=xn+1\/u+1+C,(u≠-1),∫1\/xdx=ln│x│+c,∫dx\/1+x²=arltanx+c。2、直角坐标系下(含参数与不含参数)。极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ\/2)。旋转体体积(由连续曲线、...

常用积分公式
常用积分公式有以下:1、f(x)->∫f(x)dx 2、k->kx 3、x^n->[1\/(n+1)]x^(n+1)4、a^x->a^x\/lna 5、sinx->-cosx 6、cosx->sinx 7、tanx->-lncosx 8、cotx->lnsinx 积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和...

定积分基本公式是什么?
定积分的基本公式主要包括以下几类:1. 基本积分常数项:当被积函数为常数k时,∫0dx = c,表示积分结果为常数c。2. 形如x^n的函数积分:∫x^n dx = (x^(n+1))\/(n+1) + c,适用于任何实数n,但n不能为-1。3. 与自然对数相关的积分:∫1\/x dx = ln|x| + c,揭示了与x的...

数学定积分公式
详情请查看视频回答

定积分基本公式是什么?
常用定积分公式表为:∫kdx=kx+c(K是常数),∫xndx=xn+1\/u+1+C,(u≠-1),∫1\/xdx=ln│x│+c,∫dx\/1+x²=arltanx+c。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-...

定积分的求值有哪些方法?
∫cos(x) dx = sin(x) + C 换元法(代换法):通过引入新的变量进行变换,将被积函数转化为更容易积分的形式。常见的换元法有:代数换元法 三角换元法 指数换元法 对数换元法 分部积分法:用于将一个积分的乘积形式进行分解。公式为:∫u dv = uv - ∫v du 定积分的性质:∫[a,b] f...

相似回答
大家正在搜