sinx/x等于0。
依据:有界函数乘以无穷小为无穷小。
无穷小在极限趋于无穷时为0。
一、有界函数:
有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。
其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。
有界函数并不一定是连续的。根据定义,ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。根据确界原理,ƒ在定义域上有上(下)确界。一个特例是有界数列,其中X是所有自然数所组成的集合N。
由ƒ (x)=sinx所定义的函数f:R→R是有界的。当x越来越接近-1或1时,函数的值就变得越来越大。
举例:
由ƒ (x)=sinx所定义的函数f:R→R是有界的。
注:如果正弦函数是定义在所有复数的集合上,则不再是有界的。 函数 (x不等于-1或1)是无界的。当x越来越接近-1或1时,函数的值就变得越来越大。但是,如果把函数的定义域限制为[2, ∞).,则函数就是有界的。
二、无穷小:
无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常它以函数、序列等形式出现。无穷小量即以数0为极限的变量,无限接近于0。
确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。
扩展资料:
一、有界函数的性质:
函数的有界性与其他函数性质之间的关系
函数的性质:有界性,单调性,周期性,连续性,可积性。
①可积性
闭区间上的可积函数必有界。其逆命题不成立。
②单调性
闭区间上的单调函数必有界。其逆命题不成立。
③连续性
闭区间上的连续函数必有界。其逆命题不成立。
二、无界函数:
无界函数即不是有界函数的函数。也就是说,函数y=f(x)在定义域上只有上界(或只有下界);或者既没有上界又没有下界,称f(x)在定义域上无界,在定义域无界的函数称为无界函数 。
有界函数的图形必介于两条平行于x轴的直线y=-M和y=M之间(当自变量为x时),笼统地说某个函数是有界函数或无界函数是不确切的,必须指明所考虑的区间。
参考资料:百度百科-有界函数
有界函数乘以无穷大等于无穷小吗?
依据:有界函数乘以无穷小为无穷小。无穷小在极限趋于无穷时为0。一、有界函数:有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。有界函数并不一定是连续...
有界函数乘以无穷大等于什么?
有界函数在求极限是就看成一个常数就好,乘以无穷大还是无穷大。有界函数乘以无穷小,还是无穷小,这是正确的。例如这个有界函数其实是无穷小的话,那么乘积不一定是无穷大。例如当x→0的时候,f(x)=0是有界函数,g(x)=1\/x是无穷大,但是f(x)*g(x)=0是无穷小。所以有界函数乘某个函数...
有界函数与无穷大的乘积还是无穷大吗?
而无穷小这种有界函数和无穷大相乘,结果不一定是无穷大。可以是无穷大,也可以是无穷小,还可以是任何有限常数或其他极限不存在的情况。所以有界函数×无穷大还是无穷大的想法是错误的。
有界函数乘无穷大,结果一定是无穷大吗?
有界函数中,包括了无穷小这种情况。 而无穷小这种有界函数和无穷大相乘,结果不一定是无穷大。可以是无穷大,也可以是无穷小,还可以是任何有限常数或其他极限不存在的情况。极限可能是0,可能是其他有限常数,也可能是无穷大,还可能是其他极限不存在的情况。 有界函数乘无穷大,并不是个有具体结果的东...
有界乘以无穷大等于什么?
无穷乘有界函数不可以确定结果,可能是无穷,也可能是不存在,有界函数并不一定是连续的,闭区间上的单调函数必有界,闭区间上的连续函数也必有界。在自变量的同一变化过程中,无穷大与无穷小具有倒数关系,无穷大记作∞,不可与很大的数混为一谈。无穷大分为正无穷大、负无穷大,分别记作+∞、-∞,...
有界变量或常数与无穷大的乘积是无穷大吗?
不是。无穷小的定理不适合无穷大。有界变量与无穷大的乘积只能说是无界量,不一定是无穷大。拿你举的例子说,cosX在趋向无穷的某个区间内是振荡的,那么X^cosX亦是振荡的,在无穷和0之间振荡,这种量是没有极限的,只能称为无界量。无穷大一定是无界的,但无界的不一定是无穷大。有界变量就是对于...
有界函数乘以无穷大等于多少?
有界函数可以是一个存在极限的函数(这个极限可以是0也可以是任意非零数),也可以是无穷大,也可以是有界但不存在极限且不是无穷大,这样拆分为:无穷小乘以无穷大,无穷大乘以无穷大,有非零极限的函数乘以无穷大,极限不存在也不是无穷大的函数乘以无穷大。其中的“无穷大乘以无穷大,有非零极限的...
有界乘以无穷大等于什么?
无穷乘有界函数不可以确定结果,可能是无穷;可能是不存在。无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f...
无穷大乘有界函数是否无穷大?
无穷大与有界函数的积不是无穷大。有界变量与无穷大的乘积只能说是无界量,不一定是无穷大。无穷乘有界函数不可以确定结果,可能是无穷,可能是不存在,当X-0时,(1\/X)*sin(1\/X)的极限就不存在,1\/X —〉趋向于无穷大,可是sin(1\/X)是有界的。相关信息:无穷大的倒数等于无穷小,无穷小的倒数...