高分求解 概率论与数理统计题中的 随机事件与概率问题:主要是详细帮我分析一下为什么怎么做 谢谢

只给个答案的就不要做 详细分析 感激不尽
1,http://zhidao.baidu.com/question/374424673.html?oldq=1
,2,http://zhidao.baidu.com/question/374429474.html?oldq=1
3,俩封信随机向标号为1,2,3,4,的四个邮箱投递,求第二个邮箱恰好被投入一封信的概率。用C来做。
4.设有n个房间,分给n个人,每个人都以1/n的概率进入每一房间,而且每间房里的人数没有限制,试求不出现空房的概率。
5.设A,B,C表示三个随机事件,试用其表示下列各事件。
不多于一个事件出现;
A,B,C 中恰好有俩个出现

1.2 俩题请在上述打出的网址中回答 3.4,5题在该问题中回答 谢谢
只给个答案的就不要做 详细分析 感激不尽
满意会加分 谢谢

第二个邮箱没有信的概率C(4,3)*C(4,3)
第二个邮箱两封信的概率C(4,1)*C(4,1)
一封信的概率为1-C(4,3)*C(4,3)-C(4,1)*C(4,1)=3/8

一共有n的n次方(n^n)种分房方法,但没有空房
第一个人可选n个房间
第二个人可选n-1个
。。。。。。
第n个人只能选最后一个
故概率为n!/n^n

反A*反B*反C+A*反B*反C+B*反A*反C+C*反A*反B
A*B*反C+A*反B*C+反A*B*C追问

你很厉害
3.为什么第二个邮箱没有信的概率C(4,3)*C(4,3)
第二个邮箱两封信的概率C(4,1)*C(4,1) 不是很懂

4.能不能解释下为什么有(n^n)种分房方法
5.能不能解释下 不多于一个事件出现 为什么这么表示

最后能不能请你回答一下1,2道题目 因为我看到了希望 谢谢

追答

第一封信有四种投法,其中不投入第二个信箱的投法有三种,所以第一封信不投入第二个信箱的概率是3/4,也就是C(3,1)/C(4,1),上面写错了,同理第二封信不投入第二个信箱的概率也是3/4,所以第二个信箱没有信的概率是3/4*3/4。至于没有信的概率和这个类似吧。

4.每个人都有n个房间可选,共n个人,所以有n∧n种方法,其中没有空房的选法是n!种。

5.第一项是出现0个事件(ABC都不出现)
后三项是出现一个事件(分别是A出现BC不出现、B出现AC不出现、C出现AB不出现)

追问

3.标准答案 :事件A表示第二个邮箱只投入1封信。俩封信随机投入四个邮箱共有4的平方种投法,而组成事件A只有C(2,1)*C(3,1) 最后C(2,1)*C(3,1) /16 解释下

追答

从两封信中选一封投入第二个信箱C(2,1),把另一封投入剩下三个信箱C(3,1),一共C(2,1)*C(3,1)种……还是这个简单

追问

http://zhidao.baidu.com/question/374429474.html?oldq=1
善良的人啊 回答下吧 胜利就在前方了

温馨提示:内容为网友见解,仅供参考
第1个回答  2012-02-09
gggsuryet

概率论与数理统计题,高分求解
第二问: 设Y的分布函数为Fy(y),则: Fy(y)={0,y<-1;Fx(0),-1≦y<1;1,y≧1。 分布律:P{Y<-1}=0;P{-1≦Y<1}=Fx(0);P{Y≧1}=1-P{Y<1}=1-Fx(0)。

...概率论与数理统计》)的随机事件与概率的题答案是0.2,为什么,求详...
故,事件A中,可能有1件或者2件次品。∴P(A)=[C(4,1)C(6,1)+C(4,2)]\/C(10,2)。而B事件只能是2件均从4件次品中抽取,∴P(B)=C(4,2)\/C(10,2)。∴P(抽取2件产品中有1件为不合格品,另1件也为不合格品)=P(B)\/P(A)=C(4,2)\/[C(4,1)C(6,1)+C(4,2)]=0.2。

概率论与数理统计题,高分求解
第一问用全概率公式 α=抽中是甲厂的概率乘以又是合格品的概率率+抽中是乙厂的概率乘以又是合格品的概率+抽中是丙厂的概率乘以又是合格品的概率=(6\/20)0.8+(12\/20)0.7+(2\/20)0.6=0.72 第二问要用贝叶斯公式 β=(抽中甲厂的概率乘以又是合格品的概率)\/(抽中合格品的概率)=...

概率论与数理统计的问题
2.运算规则交换律 结合律 分配律 徳摩根律 §3.频率与概率 定义在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数称为事件A发生的频数,比值称为事件A发生的频率 概率:设E是随机试验,S是它的样本空间,对于E的每一事件A赋予一个实数,记为P(A),称为事件的概率 1.概率满...

概率论与数理统计—1.1 随机事件及其运算
事件域是概率论的基础,只有在可测空间上定义概率。事件域中的每个集合称为博雷尔集,都是有概率可言的事件。样本空间的分割是事件域简化的一种方法,常用于概率与统计研究。通过分割,事件域得到简化,简化处理概率问题。参考文献:茆诗松、程伊明、濮晓龙. 概率论与数理统计教程[M]. 北京:高等教育...

谁给我说下概率论与数理统计第四版的主要考点
概率论与数理统计重要考点分析 1、随机事件和概率 2、随机变量及其概率分布 3、二维随机变量及其概率分布 4、随机变量的数字特征 5、大数定律和中心极限定理 6、数理统计的基本概念 7、参数估计 8、假设检验 对于上面每一部分的“基本内容与重要结论”要重点掌握(而不是一般的了解);第二,学会题目的...

概率论与数理统计:典型问题及分析内容简介
《概率论与数理统计:典型问题及分析》这本书是为概率论与数理统计课程设计的辅助教材,全书共7章,内容涵盖了随机事件、随机变量、随机向量、随机变量的数字特征、数理统计的基本概念、参数估计和假设检验等核心主题。每章分为三个部分:本章知识要点、典型例题讲解、习题解答。这种结构设计旨在帮助读者系统...

概率论与数理统计的公式及定义总结
概率论与数理统计非常强调对基本概念、定理、公式的深入理解。重要基本知识要点如下:一、考点分析1.随机事件和概率,包括样本空间与随机事件;概率的定义与性质(含古典概型、几何概型、加法公式);条件概率与概率的乘法公式;事件之间的关系与运算(含事件的独立性);全概公式与贝叶斯公式;伯努利概型。...

随机事件与概率(1)
这是关于本科概率论和数理统计课程内容的梳理,旨在简化现有学习资源。学习概率论前,需要先掌握数学分析和高等代数基础知识。1. 随机事件与概率1.1 随机事件和运算 随机现象指的是在一定条件下,结果并非固定的现象。样本空间是所有可能基本结果的集合,用[公式]表示,其中每个基本结果称为样本点。随机事件...

随机事件与概率(1)
欢迎来到本系列的首篇,我们将一起探索概率论与数理统计的基石——随机事件与概率。这是一份精心编纂的课程内容概要,旨在帮助你理解和掌握这些概念,无论是对数学分析和高等代数已有扎实基础,还是初涉此领域,都能找到适合的学习路径。1. 探索随机世界的奥秘 在概率的世界中,随机现象\/是指在特定条件下...

相似回答