分形,具有以非整数维形式充填空间的形态特征。通常被定义为“一个粗糙或零碎的几何形状,可以分成数个部分,且每一部分都(至少近似地)是整体缩小后的形状”,即具有自相似的性质。分形(Fractal)一词,是芒德勃罗创造出来的,其原意具有不规则、支离破碎等意义。1973年,芒德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形的设想。分形是一个数学术语,也是一套以分形特征为研究主题的数学理论。分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科,是研究一类现象特征的新的数学分科,相对于其几何形态,它与微分方程与动力系统理论的联系更为显著。分形的自相似特征可以是统计自相似,构成分形也不限于几何形式,时间过程也可以,故而与鞅论关系密切。分形几何是一门以不规则几何形态为研究对象的几何学。由于不规则现象在自然界普遍存在,因此分形几何学又被称为描述大自然的几何学。分形几何学建立以后,很快就引起了各个学科领域的关注。不仅在理论上,而且在实用上分形几何都具有重要价值。
分形的介绍
分形是一个数学术语,也是一套以分形特征为研究主题的数学理论。分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科,是研究一类现象特征的新的数学分科,相对于其几何形态,它与微分方程与动力系统理论的联系更为显著。分形的自相似特征可以是统计自相似,构成分形也不限于几何形式,时间过程...
分形有什么
总之,分形是一种强大的数学工具,用于描述和理解自然界和社会中的复杂性和不规则性。它在多个领域都有广泛的应用,并且正在不断发展和完善中。希望这个回答能够为你提供一个关于分形的简单明了的介绍。
分形维数分形历史介绍
分形(Fractal)理论,被誉为大自然的几何学,是现代数学的一个新分支,它与动力系统的混沌理论相互融合,共同构成了一种新的世界观和方法论。分形理论的重要之处在于它承认局部与整体在一定条件或过程中在某一方面(形态、结构、信息、功能、时间、能量等)可能表现出相似性。它挑战了传统的空间维度观念...
分形理论的介绍
分形理论的数学基础是分形几何学,即由分形几何衍生出分形信息、分形设计、分形艺术等应用。分形理论的最基本特点是用分数维度的视角和数学方法描述和研究客观事物,也就是用分形分维的数学工具来描述研究客观事物。它跳出了一维的线、二维的面、三维的立体乃至四维时空的传统藩篱,更加趋近复杂系统的真实属性...
分形由来的介绍
此词源于拉丁文形容词fractus,对应的拉丁文动词是frangere(“破碎”、“产生无规碎片”)。此外与英文的fraction(“碎片”、“分数”)及fragment(“碎片”)具有相同的词根。在70年代中期以前,芒德布罗一直使用英文fractional一词来表示他的分形思想。因此,取拉丁词之头,撷英文之尾的fractal,本意是...
分形简介的介绍
”——物理学家惠勒 分形理论是在上世纪70年代由芒德布罗几乎集一己之力创立的,但其严格的数学基础之一——芒德布罗集,却是70年代末芒德布罗及布鲁克斯、马蒂尔斯基以及道阿迪、哈伯德、沙斯顿等人几乎同时分别建立完善的,他们的思想都源自上世纪前叶一些前辈如法图、莱维、朱利亚的有关思想。 中文文献...
分形的介绍
《分形(第2版)》是《分形》的第2版,第1版在1995年8月由清华大学出版社出版。《分形(第2版)》以自然界中普遍存在的非平衡非线性复杂系统中自发形成的各种时空有序状态(或结构)为研究对象,介绍了分形理论的基本概念、数学基础和研究方法,及其在凝聚态物理学、材料科学、化学、生物学、医学、...
分形理论有什么用处
分形形体中的自相似性可以是完全相同,也可以是统计意义上的相似。标准的自相似分形是数学上的抽象,迭代生成无限精细的结构,如科赫曲线(Koch snowflake)、谢尔宾斯基地毯(Sierpinski carpet)等。这种有规分形只是少数,绝大部分分形是统计意义上的无规分形。这里再进一步介绍分形的分类,根据自相似性的程度,分形可以分为有...
分形理论及其应用的内容简介
分形理论是一门新兴的非线性学科,它是研究自然界不规则和复杂现象的科学理论和方法。全书共分10章,用通俗易懂的语言由浅入深地介绍了分形几何的基本概念、分形维数的计算、分形图形的生成、分形生长模型与模拟、分形插值与模拟、随机分形以及与分形密不可分的混沌理论的基本知识。在此基础上,通过总结...
分形理论及其应用内容简介
分形理论,作为一门新兴的非线性学科,聚焦于探究自然界中的不规则与复杂现象。本书《分形理论及其应用》深入浅出地介绍了分形的基本理论,并探讨了其在科学技术与人文艺术领域的广泛应用。全书共10章,以易懂的语言,由浅入深地解析了分形几何的核心概念、分形维数的计算方法、分形图形的生成过程、分形...