有一维空间、二维空间、三维空间、四维空间,有没有五维和六维?

关于五维及更高维的情况

1维:一条线,没有问题。

2维:一个平面,没有问题。但为了高维度时解释上的方便,作者用另一个方式来说明二维:分离。即:另外分出一条线。

3维:一个空间,同样很直观,因为我们就是眼睛所见就是3维的空间。但为了高维度时解释方便,作者同样用了另一个方式来诠释:摺起。一个3维空间下摺起的动作能让2维空间的点跳到另一个2维空间的点。(延伸:一个 n 维空间下的摺起动作能让 (n - 1) 维空间的点跳到另一个 (n - 1) 维空间的点,这个观念之后将会被继续使用到。)

4维:在三维上加上时间感念,我们的眼睛看到的是三维的世界,但如果有一种生物看得一个人由出生到死亡的一生,那麼3维下的时间对它而言就不是时间了,3维的时间对此生物而言相当於是几何上的第四个维度。这个生物会看到一条波动著的4-D长蛇,一条纪录著一个人由出生到死亡的长蛇。
举个让人比较容易理解的例子。小时候应该很多人在课本每一页的角落画上一个个的人,每个人都只有一点点动作上的小差异,当把书本快速的翻过时,这些小人合起来就像在做动作一样。如果我们把这一页页都拆开,就可以看到这个2D小人的一生了。
对这个2D的小人而言,第三个维度是时间,而对我们这些3D人而言,这第三个维度只是书本的厚度。这件事情暗示著:对 n 维世界的人而言,第 n + 1 个维度是时间,但对於 n + 1 维世界的人而言,第 n + 1 维也只是空间上的一个维度而已。因此,2D小人的时间对我们 (3D世界的人) 来说是厚度 (空间上的一个维度),我们 (3D世界的人) 所认为的时间,其实在 4D 世界的人眼中只是一个空间上的维度,而 4D 世界的人眼中的时间,也只是 5D 世界的人眼中的一个空间上的维度。
那麼什麼是4D呢? 一条线。没错,一条线! 只是这条线上的每个点分别代表了人 (3D世界的人) 一生中的某一个时点及他的所在位置。

5维:分离。一个人的一生中有无数的选择。我们常说,如果当时我能怎麼样,现在我就可以如何如何了。是的,5维就是把这所有可能的选择给包容进来。因此,从4D的线上分离出无数条线 (选择),就构成了第5维。

6维:摺起。类似於3维的概念,6维能让5维空间中的点自由跳跃。因此,如果一个3D世界的人对现在的生活不满意,假使他拥有6维空间的能力,则他能够自由的变成5维空间中任何一个他所满意的位置。

7维:前面在4维到6维举的例子都是一个人的一生。现在我们把这个概念放大来看,也可以想像成是宇宙的一生:「从大爆炸宇宙诞生,各种可能性下所产生的各种变化,一直到宇宙灭亡为止。」我们把前面这串叙述,看成7维空间的一个点,如果能有两个这种点,我们就能构筑出7维空间了 (again, 又是一条线)。
问题是:「从大爆炸宇宙诞生,各种可能性下所产生的各种变化,一直到宇宙灭亡为止。」这句话本身就代表无限大了,怎麼会有两个无限大的点呢?
解释是:如果大爆炸的一开始初始条件不同,那麼就会有不一样的宇宙诞生。因此,第七维的空间可以想成是两个不同初始条件的宇宙连成的一条线。

8维:应该可以猜得到那两个字是什麼了:「分离」。从7维的线上分离出来的线,构成第8维。更精确地说,就是各种不同的初始条件下形成的宇宙所组成的集合。

9维:摺起。第9维的摺起动作能让第8维空间内的点跳跃。因此到了第9维的空间,我们已经能够自由穿梭在任何一个宇宙的任何一个时点的任何一个3度空间了。

10维:呼,终於走到这一步了。
在第10维,我们将所有可能的宇宙中的所有的时间下的所有的3度空间,想像成10维空间下的一个点。这个点已经包含了一切了。你还能想像另一个「所有可能的宇宙中的所有的时间下的所有的3度空间」的点吗?

参考资料:人人上转载的

温馨提示:内容为网友见解,仅供参考
第1个回答  2012-02-07
首先我不看好,爱因斯坦的时间轴问题,因为这个问题是理所当然的,立体在时间的路上行走,不可逆转,这是事实没有必要做出研究,我所说的四维是空间的解释,并非虚拟的时间,
一维二维我就不说了,你肯定知道,三维就是三个轴(XYZ.........)你有没有注意过三维你最多可以看到3个面?那你有没有试图想过看到4个面,如果你看到了,这说明什么,你有没有看到过?我敢肯定你一定看见过,那就是透明的东西,就像透明立方体,你可以同时看见6个面(有些人肯定会说我要是看的不是矩形生成的立方体,那我可以看到N多个小边,但你有没有想过,其中有一半的面你是看不到的,也就只有透明的东西你才能看见),所以我认为地球上是存在四维空间的,甚至更多的维,还是拿透明立方体来说,我们是没有办法不接触物体就通过它的,连光线也是如此,除非有非物质的东西才能穿过他,除了固体,液体,气体,之外还有别的东西存在吗? 肯定有的,例如人得灵魂(现在以证明灵魂是存在的,也就是你的意识重量在11——41克不等,根据人得经历和记忆所累积),其实包括宇宙本身是没有边际的,也可以说每个地方都是边际,你可以把宇宙看成一个一个的传送带,最快的速度就是立即消失,立即出现,就像一串串的循环代码,根本没有最终的答案,时间在进行着,但是谁都不知道最终的解,不管在宇宙的代码中算出了什么过程量,太阳风暴也好,耀斑也好,光束射线也好,包括黑洞这都是过程,永远不会有结果,
第2个回答  2012-02-04
有,宇宙共有十一维。弦论说,剩下六维被卷曲在很小的尺度,M理论又预言了一维,共十一维。
第3个回答  2012-02-10
你好,从五维空间就是理论性质的存在了,因为我们的世界是三维的几乎不能模拟出五维空间以上的实验,五维空间就是在长宽高时间的基础上加了一个速度的轴,当速度快到一定程度,时间就会缩短(根据时间和速度成反比)当速度达到光速的时候,时间为零,周围的时间静止,如果超越了光速。那么时间就会倒流,回到过去。所以我们也可以把五维空间叫做时光隧道。六维空间则是驭驾在两个甚至若干个时间轴之上,过去未来随意穿梭,简单地说,五维空间只能回到过去,但是六维空间却可以去未来。不过以上仅是理论,没有科学实验证实本回答被提问者采纳

有一维空间、二维空间、三维空间、四维空间,有没有五维和六维?
2维:一个平面,没有问题。但为了高维度时解释上的方便,作者用另一个方式来说明二维:分离。即:另外分出一条线。3维:一个空间,同样很直观,因为我们就是眼睛所见就是3维的空间。但为了高维度时解释方便,作者同样用了另一个方式来诠释:摺起。一个3维空间下摺起的动作能让2维空间的点跳到另...

“一维”、“二维”、“三维”、“四维”、“五维”、“六维”、“七 ...
分别是一维空间、“二维空间”、“三维空间”、“四维空间”、“五维空间”、“六维空间”、“七维空间”的意思。直线上有无数个点,实际上就是一维空间。其实,点也是一维空间,不过这个一维空间是无限小的。二维空间是指仅由长度和宽度(在几何学中为X轴和Y轴)两个要素所组成的平面空间,只在平面...

世界一共有几维空间?
我们所生活的世界是三维空间。目前已知有零维空间(点世界)、一维空间(线世界)、二维空间(面世界)、三维空间(立体世界)。从爱因斯坦的《相对论》可以推理出存在四维及其以上的空间,但目前仍未发现。

什么是一维空间,二维空间,三维空间,四维空间和五维空间?
一维指的是直线。二维指的是指平面。三维指的是立体空间。四维指的是维度。五维指的是时间一维、层次一维、传统三维空间统一的空间。一维空间中的物体,只有长度,没有宽度和高度。打一个比方,我们要把一个一维的物体(实际上就是一条线段)关起来,只需要在它的两端各加一个点就可以了。直线上有无...

四维空间 如何理解呢 有五维空间吗
现在的说法是三维空间加上时间这一维,构成所谓的四维空间。然而,这种说法是一击即破的。为什么? 我们可以从二维来考虑。一个二维生物(如果有的话),他们考虑所谓的三维空间绝对和我们所认识的三维空间不同——它们会把时间作为第三维,因为他们无法感受这一维的存在。同样,我们现在也走进了这个误区,把时间算做第四维。

四维空间、五维空间、六维空间有什么区别?
四维空间:三维空间的基础上加上时间这个维度;五维空间:把四维空间的时间轴叠加成时间面;六维空间:五维基础上引入引力。说六维前,先掌握十字切分,以五维空间为例。五维空间是多个科学上称为平行宇宙的集合,多个空间的不同时间轴独立做着不一样的事。平行时间轴切割会发现能切出多个平行世界。垂直...

有三维、四维,有没有五维,四维指什么
有四维,也有五维、六维……一般说三维空间、四维空间。四维是在三维空间的基础上增加时间这一因素。

有五维空间吗
线是一维的,参数是点。面是二维的,参数是线。体是三维的,参数是面。以此类推,以体为参数构成的空间就是四维空间,通常理解为时空。那么以时空为参数构成的空间应该就是五维空间,我们人类能够感知的只有4维了。五维空间的提出,跟暗物质发现是密切相关的。物理学界普遍承认的说法是:暗物质发现证实...

认知的六个维度分别是?
三维空间:立体思维 立体思维的人相比以上两类人最大的特点就是擅长换位思考,不仅能知道站在对方的角度考虑问题,要有一定的高度或深度。那么一、二维度的人在三维度人面前就是透明的,如果第三维度的人想收割他们也是分分钟的事。骗子大部分都集中在此空间。四维空间:时间思维 这类人相对第三维度来...

四维空间,五维空间,六维空间,分别是什么样的?
四维空间:三维空间的基础上加上时间这个维度;五维空间:把四维空间的时间轴叠加成时间面;六维空间:五维基础上引入引力。说六维前,先掌握十字切分,以五维空间为例。五维空间是多个科学上称为平行宇宙的集合,多个空间的不同时间轴独立做着不一样的事。平行时间轴切割会发现能切出多个平行世界。垂直...

相似回答