1\/1*2+1\/2*3+1\/3*4+.1\/n(n+1)
1\/1×2+1\/2×3+1\/3×4+.+1\/n(n+1) 1\/1×2+1\/2×3+1\/3×4+...+1\/n(n+1) =1-1\/2+1\/2-1\/3+...+1\/n-1\/(n+1) =1-1\/(n+1) =n\/(n+1)急!1\/1*2+1\/2*3+1\/3*4+.+1\/n(n+1)+? 1\/(1*2)=1-1\/2 1\/(3*4)=1\/3-1\/4 1\/[n(n...
1\/1*2+1\/2*3+1\/3*4+...1\/n(n+1)
1\/1×2+1\/2×3+1\/3×4+...1\/n(n+1)==n\/n+1。1、可以分析数列的规律:1\/1×2=1-1\/2,1\/2×3=1\/2-1\/3;即每个数字都可以进行拆分为两个分数相减,通项公式为:1\/n(n+1)=1\/n-1\/n+1 2、1\/1×2+1\/2×3+1\/3×4+...1\/n(n+1)=1-1\/2+1\/2-1\/3+1\/3-1\/...
1\/1*2+1\/2*3+1\/3*4+…+1\/n(n+1)
解:依题意得A1=1\/1*2,A2=1\/2*3...所以 An=1\/n(n+1)An=1\/n(n+1)=1\/n-1\/(n+1)所以A1=1-1\/(1+1)1-1\/2 A2=1\/2-1\/3 A3=1\/3-1\/4 。。。An=1\/n-1\/(n+1)所以1\/1*2+1\/2*3+1\/3*4+…+1\/n(n+1)就等于 A1+A2+A3+...+An= 1-1\/2+1\/2-1\/3+1\/...
求极限 limx→∞【1\/1*2+1\/2*3+1\/3*4+ ……+1\/n(n+1)】
原式=lim[1-1\/2+1\/2-1\/3+……+1\/n-1\/(n-1)]=lim[1-1\/(n+1)]=1
1除以1*2+1除以2*3+1除以3*4一直到1除以n(n+1)
1\/(1×2)=(1\/1)-(1\/2)1\/(2×3)=(1\/2)-(1\/3)1\/(3×4)=(1\/3)-(1\/4)1\/(4×5)=(1\/4)-(1\/5)………1\/[n(n+)]=[1\/n]-1\/[n+1]则:原式=(1\/1)-1\/(n+1)=n\/(n+1)
C语言编程:求1\/1×2+1\/2×3+1\/3×4+……1\/n×(n+1)
估计大多数人都小学的时候都做过这个。其实1\/n*(n+1)=1\/n-1\/(n+1);所以这个函数可以这样写。float fun(float n){ return 1-1\/(n+1);} 主函数中 int main(){ float n;printf("%f\\n",fun(n));return 0;}
求1×1\/2+1\/2×1\/3+1\/3×1\/4+...+1\/n×1\/(n+1)的值
an = 1\/[n(n+1)]= 1\/n -1\/(n+1)1×1\/2+1\/2×1\/3+1\/3×1\/4+...+1\/n×1\/(n+1)= a1+a2+..+an =[1\/n -1\/(n+1)]+[1\/(n-1) -1\/n]+...+[1\/1-1\/2]=1-1\/(n+1)=n\/(n+1)
1×1\/2+2×1\/3+3×1\/4+……+N×1\/(N+1)=?
1×1\/2+2×1\/3+3×1\/4+……+N×1\/(N+1)=1-1\/2+1-1\/3+1-1\/4+1-1\/5+...1\/n+1 =n+2-ln(n+1)这是调和级数,没有通项公式,有近似公式 1+1\/2+1\/3+……+1\/n=lnn ln是自然对数,当n 趋于无穷时,1+1\/2+1\/3+……+1\/n=lnn+R R为欧拉常数,约为0.5772....
1\/1×2×3+1\/2×3×4+…1\/n(n+1)(n+2)<1\/4 这道数学题的答案,希望有详...
1/n(n+1)(n+2)=(1/2n+1+1\/2(n+2)-1/(n+1),提出前面的1\/2,代入数据,观察并消去相同项,整理结果,比较即得答案。记得一定要仔细观察。
求数列1\/1x2,1\/2x3,1\/3x4,1\/4x5...的前n项和---
第n项为1\/n(n+1)由于1\/1x2=1-1\/2 1\/2x3=(1\/2)-(1\/3)1\/3x4=(1\/3)-(1\/4)……1\/n(n+1)=(1\/n)-(1\/n+1)所以前n项的和为1-(1\/n+1)