圆周率的历史资料有关内容

我们要查询圆周率的资料,谁提供一下?

圆周率的历史资料:

古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德 开创了人类历史上通过理论计算圆周率近似值的先河。

阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。

接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。

他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。

扩展资料:

把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。

如果以39位精度的圆周率值,来计算宇宙的大小,误差还不到一个原子的体积 。以前的人计算圆周率,是要探究圆周率是否循环小数。

自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了,π在许多数学领域都有非常重要的作用。

参考资料来源:百度百科—圆周率

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2017-11-24
圆周率—π
▲什麼是圆周率?
圆周率是一个常数,是代表圆周和直径的比例。它是一个无理数,即是一个无限不循环小数。但在日常生活中,通常都用3.14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。
▲什麼是π?
π是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。既然他是大数学家,所以人们也有样学样地用π来表圆周率了。但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现。
▲圆周率的发展史
在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德(Archimedes of Syracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。
亚洲
中国:
魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即「割圆术」),求得π的近似值3.1416。
汉朝时,张衡得出π的平方除以16等於5/8,即π等於10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。
王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。
公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小於八亿分之一。这个纪录在一千年后才给打破。
印度:
约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。
婆罗门笈多采用另一套方法,推论出圆周率等於10的平方根。
欧洲
斐波那契算出圆周率约为3.1418。
韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537
他还是第一个以无限乘积叙述圆周率的人。
鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。
华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......
欧拉发现的 e的iπ次方加1等於0,成为证明π是超越数的重要依据。
之后,不断有人给出反正切公式或无穷级数来计算π,在这里就不多说了。
π与电脑的关系
在1949年,美国制造的世上首部电脑—ENIAC(Electronic Numerical Interator and Computer)在亚伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等於平均两分钟算出一位数。五年后,NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随著美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和M. Bouyer发现了π的第一百万个小数位。
在1976年,新的突破出现了。萨拉明(Eugene Salamin)发表了一条新的公式,那是一条二次收歛算则,也就是说每经过一次计算,有效数字就会倍增。高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。之后, 不断有人以高速电脑结合类似萨拉明的算则来计算π的值。目前为止,π的值己被算至小数点后51,000,000,000个位。
为什麼要继续计算π
其实,即使是要求最高、最准确的计算,也用不著这麼多的小数位,那麼,为什麼人们还要不断地努力去计算圆周率呢?
这是因为,用这个方法就可以测试出电脑的毛病。如果在计算中得出的数值出了错,这就表示硬体有毛病或软体出了错,这样便需要进行更改。同时,以电脑计算圆周率也能使人们产生良性的竞争,,科技也能得到进步,从而改善人类的生活。就连微积分、高等三角恒等式,也是有研究圆周率的推动,从而发展出来的。
▲π的年表
圆周率的发展
年代 求证者 内容
古代 中国周髀算经 周一径三
圆周率 = 3
西方圣经
元前三世 阿基米德(希腊) 1. 圆面积等於分别以半圆周和径为边长的矩形
的面积
2.圆面积与以直径为长的正方形面积之比为11:14
3. 圆的周长与直径之比小於3 1/7 ,大於
3 10/71
三世纪 刘徽
中国 用割圆术得圆周率=3.1416称为'徽率'
五世纪 祖冲之
中国 1. 3.1415926<圆周率<3.1415927
2. 约率 = 22/7
3. 密率 = 355/113
1596年 鲁道尔夫
荷兰 正确计萛得的35 位数字
1579年 韦达
法国 '韦达公式'以级数无限项乘积表示
1600年 威廉.奥托兰特
英国 用/σ表示圆周率
π是希腊文圆周的第一个字母
σ是希腊文直径的第一个字母
1655年 渥里斯
英国 开创利用无穷级数求的先例
1706年 马淇
英国 '马淇公式'计算出的100 位数字
1706年 琼斯
英国 首先用表示圆周率
1789年 乔治.威加
英国 准确计萛至126 位
1841年 鲁德福特
英国 准确计萛至152 位
1847年 克劳森
英国 准确计萛至248 位
1873年 威廉.谢克斯
英国 准确计萛至527 位
1948年 费格森和雷恩奇
英国 美国 准确计萛至808 位
1949年 赖脱威逊
美国 用计算机将计算到2034位
现代 用电子计算机可将计算到亿位

▲背诵π
历来都有不少人想挑战自己的记忆力,他们通常以圆周率为目标。目前的世界记录是由敬之后藤创下的,他在1995年花了9个多小时,背诵出圆周率的42,000个位数。
目前,最常用的记忆圆周率技巧就是字长法,以每个字的字数代表圆周率的一个位数。在这种方法中最简单的就是“How I wish I could calculate pi.”
用中文去背圆周率也很简单,因为每个数字都只有一个音节,这样背起来就如背诗一样,只不过有点言不及义,例如:
山巅一石一壶酒
3.14159
二侣舞扇舞
26535
把酒砌酒扇又搧
8979323
饱死罗.....
846.....
关於π的有趣发现
将π的头144个小数位数字相加,结果是666。144也等於(6+6)*(6+6)
爱因斯坦的生日恰好是在π日(3/14/1879)
从π的第523,551,502个小数位开始,是数列123456789。
从第359个位数开始,是数字360。也就是说第360个位数正好位於数字360的中央。
在头一百万个小数中,除了2和4,其他数字都曾连续出现7次。

资料来源
<<神奇的π>> David Blatner 著 商周出版
http://www.geocities.com/monicachan006/know.html
http://netcity1.web.hinet.net/UserData/lsc24285/circle.html
<<新世纪数学>>1A 第7课 牛津大学出版社本回答被提问者采纳
第2个回答  2021-03-23

圆周率的历史资料:

古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德 开创了人类历史上通过理论计算圆周率近似值的先河。

阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。

接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。

他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。

扩展资料:

把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。

如果以39位精度的圆周率值,来计算宇宙的大小,误差还不到一个原子的体积 。以前的人计算圆周率,是要探究圆周率是否循环小数。

自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了,π在许多数学领域都有非常重要的作用。

参考资料来源:百度百科—圆周率

第3个回答  2007-09-11
圆周率的发展史
在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德(Archimedes of Syracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。
亚洲
中国:
魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即「割圆术」),求得π的近似值3.1416。
汉朝时,张衡得出π的平方除以16等於5/8,即π等於10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。
王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。
公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小於八亿分之一。这个纪录在一千年后才给打破。
印度:
约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。
婆罗门笈多采用另一套方法,推论出圆周率等於10的平方根。
欧洲
斐波那契算出圆周率约为3.1418。
韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537
他还是第一个以无限乘积叙述圆周率的人。
鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。
华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......
欧拉发现的 e的iπ次方加1等於0,成为证明π是超越数的重要依据。
之后,不断有人给出反正切公式或无穷级数来计算π,在这里就不多说了。
π与电脑的关系
在1949年,美国制造的世上首部电脑—ENIAC(Electronic Numerical Interator and Computer)在亚伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等於平均两分钟算出一位数。五年后,NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随著美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和M. Bouyer发现了π的第一百万个小数位。
在1976年,新的突破出现了。萨拉明(Eugene Salamin)发表了一条新的公式,那是一条二次收歛算则,也就是说每经过一次计算,有效数字就会倍增。高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。之后, 不断有人以高速电脑结合类似萨拉明的算则来计算π的值。目前为止,π的值己被算至小数点后51,000,000,000个位。
为什麼要继续计算π
其实,即使是要求最高、最准确的计算,也用不著这麼多的小数位,那麼,为什麼人们还要不断地努力去计算圆周率呢?
这是因为,用这个方法就可以测试出电脑的毛病。如果在计算中得出的数值出了错,这就表示硬体有毛病或软体出了错,这样便需要进行更改。同时,以电脑计算圆周率也能使人们产生良性的竞争,,科技也能得到进步,从而改善人类的生活。就连微积分、高等三角恒等式,也是有研究圆周率的推动,从而发展出来的。
▲π的年表
圆周率的发展
年代 求证者 内容
古代 中国周髀算经 周一径三
圆周率 = 3
西方圣经
元前三世 阿基米德(希腊) 1. 圆面积等於分别以半圆周和径为边长的矩形
的面积
2.圆面积与以直径为长的正方形面积之比为11:14
3. 圆的周长与直径之比小於3 1/7 ,大於
3 10/71
三世纪 刘徽
中国 用割圆术得圆周率=3.1416称为'徽率'
五世纪 祖冲之
中国 1. 3.1415926<圆周率<3.1415927
2. 约率 = 22/7
3. 密率 = 355/113
1596年 鲁道尔夫
荷兰 正确计萛得的35 位数字
1579年 韦达
法国 '韦达公式'以级数无限项乘积表示
1600年 威廉.奥托兰特
英国 用/σ表示圆周率
π是希腊文圆周的第一个字母
σ是希腊文直径的第一个字母
1655年 渥里斯
英国 开创利用无穷级数求的先例
1706年 马淇
英国 '马淇公式'计算出的100 位数字
1706年 琼斯
英国 首先用表示圆周率
1789年 乔治.威加
英国 准确计萛至126 位
1841年 鲁德福特
英国 准确计萛至152 位
1847年 克劳森
英国 准确计萛至248 位
1873年 威廉.谢克斯
英国 准确计萛至527 位
1948年 费格森和雷恩奇
英国 美国 准确计萛至808 位
1949年 赖脱威逊
美国 用计算机将计算到2034位
现代 用电子计算机可将计算到亿位

▲背诵π
历来都有不少人想挑战自己的记忆力,他们通常以圆周率为目标。目前的世界记录是由敬之后藤创下的,他在1995年花了9个多小时,背诵出圆周率的42,000个位数。
目前,最常用的记忆圆周率技巧就是字长法,以每个字的字数代表圆周率的一个位数。在这种方法中最简单的就是“How I wish I could calculate pi.”
用中文去背圆周率也很简单,因为每个数字都只有一个音节,这样背起来就如背诗一样,只不过有点言不及义,例如:
山巅一石一壶酒
3.14159
二侣舞扇舞
26535
把酒砌酒扇又搧
8979323
饱死罗.....
846.....
关於π的有趣发现
将π的头144个小数位数字相加,结果是666。144也等於(6+6)*(6+6)
爱因斯坦的生日恰好是在π日(3/14/1879)
从π的第523,551,502个小数位开始,是数列123456789。
从第359个位数开始,是数字360。也就是说第360个位数正好位於数字360的中央。
在头一百万个小数中,除了2和4,其他数字都曾连续出现7次。

资料来源
<<神奇的π>> David Blatner 著 商周出版
http://www.geocities.com/monicachan006/know.html
http://netcity1.web.hinet.net/UserData/lsc24285/circle.html
<<新世纪数学>>1A 第7课 牛津大学出版社
第4个回答  2007-09-11
圆周率—π
▲什麼是圆周率?
圆周率是一个常数,是代表圆周和直径的比例。它是一个无理数,即是一个无限不循环小数。但在日常生活中,通常都用3.14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。
▲什麼是π?
π是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。既然他是大数学家,所以人们也有样学样地用π来表圆周率了。但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现。
▲圆周率的发展史
在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德(Archimedes of Syracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。
亚洲
中国:
魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即「割圆术」),求得π的近似值3.1416。
汉朝时,张衡得出π的平方除以16等於5/8,即π等於10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。
王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。
公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小於八亿分之一。这个纪录在一千年后才给打破。
印度:
约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。
婆罗门笈多采用另一套方法,推论出圆周率等於10的平方根。
欧洲
斐波那契算出圆周率约为3.1418。
韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537
他还是第一个以无限乘积叙述圆周率的人。
鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。
华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......
欧拉发现的 e的iπ次方加1等於0,成为证明π是超越数的重要依据。
之后,不断有人给出反正切公式或无穷级数来计算π,在这里就不多说了。
π与电脑的关系
在1949年,美国制造的世上首部电脑—ENIAC(Electronic Numerical Interator and Computer)在亚伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等於平均两分钟算出一位数。五年后,NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随著美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和M. Bouyer发现了π的第一百万个小数位。
在1976年,新的突破出现了。萨拉明(Eugene Salamin)发表了一条新的公式,那是一条二次收歛算则,也就是说每经过一次计算,有效数字就会倍增。高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。之后, 不断有人以高速电脑结合类似萨拉明的算则来计算π的值。目前为止,π的值己被算至小数点后51,000,000,000个位。
为什麼要继续计算π
其实,即使是要求最高、最准确的计算,也用不著这麼多的小数位,那麼,为什麼人们还要不断地努力去计算圆周率呢?
这是因为,用这个方法就可以测试出电脑的毛病。如果在计算中得出的数值出了错,这就表示硬体有毛病或软体出了错,这样便需要进行更改。同时,以电脑计算圆周率也能使人们产生良性的竞争,,科技也能得到进步,从而改善人类的生活。就连微积分、高等三角恒等式,也是有研究圆周率的推动,从而发展出来的。
▲π的年表
圆周率的发展
年代 求证者 内容
古代 中国周髀算经 周一径三
圆周率 = 3
西方圣经
元前三世 阿基米德(希腊) 1. 圆面积等於分别以半圆周和径为边长的矩形
的面积
2.圆面积与以直径为长的正方形面积之比为11:14
3. 圆的周长与直径之比小於3 1/7 ,大於
3 10/71
三世纪 刘徽
中国 用割圆术得圆周率=3.1416称为'徽率'
五世纪 祖冲之
中国 1. 3.1415926<圆周率<3.1415927
2. 约率 = 22/7
3. 密率 = 355/113
1596年 鲁道尔夫
荷兰 正确计萛得的35 位数字
1579年 韦达
法国 '韦达公式'以级数无限项乘积表示
1600年 威廉.奥托兰特
英国 用/σ表示圆周率
π是希腊文圆周的第一个字母
σ是希腊文直径的第一个字母
1655年 渥里斯
英国 开创利用无穷级数求的先例
1706年 马淇
英国 '马淇公式'计算出的100 位数字
1706年 琼斯
英国 首先用表示圆周率
1789年 乔治.威加
英国 准确计萛至126 位
1841年 鲁德福特
英国 准确计萛至152 位
1847年 克劳森
英国 准确计萛至248 位
1873年 威廉.谢克斯
英国 准确计萛至527 位
1948年 费格森和雷恩奇
英国 美国 准确计萛至808 位
1949年 赖脱威逊
美国 用计算机将计算到2034位
现代 用电子计算机可将计算到亿位

▲背诵π
历来都有不少人想挑战自己的记忆力,他们通常以圆周率为目标。目前的世界记录是由敬之后藤创下的,他在1995年花了9个多小时,背诵出圆周率的42,000个位数。
目前,最常用的记忆圆周率技巧就是字长法,以每个字的字数代表圆周率的一个位数。在这种方法中最简单的就是“How I wish I could calculate pi.”
用中文去背圆周率也很简单,因为每个数字都只有一个音节,这样背起来就如背诗一样,只不过有点言不及义,例如:
山巅一石一壶酒
3.14159
二侣舞扇舞
26535
把酒砌酒扇又搧
8979323
饱死罗.....
846.....
关於π的有趣发现
将π的头144个小数位数字相加,结果是666。144也等於(6+6)*(6+6)
爱因斯坦的生日恰好是在π日(3/14/1879)
从π的第523,551,502个小数位开始,是数列123456789。
从第359个位数开始,是数字360。也就是说第360个位数正好位於数字360的中央。
在头一百万个小数中,除了2和4,其他数字都曾连续出现7次。

圆周率的由来和历史
》)中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关。2、历史:几千年以来,无数著名的数学家对圆周率π的研究倾注了毕生的心血,正如一位英国数学家所说:“这个奇妙的3.14159溜进了每一扇门,冲进了每一扇窗,钻进了每一个烟囱。”对π的整个研究,可以分为四个阶段:

圆周率的历史资料有关内容
1. 古希腊被誉为古代几何王国,在圆周率的研究史上扮演了重要角色。2. 著名的古希腊数学家阿基米德是首位通过理论计算得出圆周率近似值的学者。3. 阿基米德通过单位圆,采用内接和外接正六边形的方法,分别估算出圆周率不低于3且不高于4。4. 他进一步增加内接和外接正多边形的边数,不断改进圆周率的估算...

圆周率的历史圆周率的记号
1、圆周率的历史 一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率=25\/8=3.125。同一时期的古埃及文物,莱因德数学纸草书也表明圆周率等于分数16\/9的平方,约等于3.1605。埃及人似乎在更早的时候就知道圆周率了。英国作家JohnTaylor(1781_1864)在其名著《金字塔》中指出,造于公元前...

圆周率的发展历史
圆周率的发展历史可分为古代近似方法、古希腊的逼近方法、数学推导的进展以及计算机计算的突破。1. 古代近似方法 在古代,由于缺乏准确计算方法,人们常使用近似值来计算圆周率。2. 古希腊的逼近方法 古希腊数学家阿基米德大约在公元前250年运用割圆术,逐步逼近圆周率的数值。3. 数学推导的进展 数学家欧拉...

圆周率的历史资料有关内
圆周率的历史探索源远流长,古希腊时期,数学家阿基米德为人类的圆周率研究留下了深远的印记。他以单位圆为基础,通过内接正六边形和外接正六边形的几何特性,首次实现了理论计算圆周率的边界估计。阿基米德不断细化多边形的边数,从六边形到九十六边形,逐步逼近圆周率的精确值,最终得到一个近似值3.141851,即...

圆周率的历史资料有关内容
圆周率的历史资料:古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。接着,他对内接正六边形和外接正六边形的边...

圆周率的历史
圆周率的历史 一、起源 圆周率的发现可追溯到古代,当时为了研究圆的周长与直径的关系而产生。在古埃及、古希腊以及古印度等文明中,已有关于圆周率的早期研究。随着数学的发展,这一数值的计算逐渐精确。二、早期发展 随着历史的演进,人们对圆周率的认知不断加深。从最初粗略的观察与估算,到采用特定方法...

圆周率的历史
圆周率的历史:一、起源与早期发展 圆周率,用希腊字母π表示,是一个在数学及生活中广泛应用的常数。它的历史可以追溯到古代文明时期,早在公元前,人们就开始尝试计算圆的周长与直径之比。在中国、印度、埃及及希腊等文明古国,都有关于圆周率的早期研究。二、古典数学时期的圆周率研究 古典数学时期,...

圆周率的历史
圆周率是中国数学里面的知识,早在1500多年前,祖冲之计算出圆周率π,π值为3.1415926,现在我们都记为π=3.14。魏晋时期的刘徽,汉朝时期的张衡,都有涉及此类数学知识。公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355\/113,此记录在一千年后才打破。刘徽曾用使正多边形的边数逐渐...

圆周率的历史。
1、圆周率的历史:从古到今的发展 圆周率的历史可以追溯到古代,古巴比伦时期、古埃及、古印度等文明都开始研究圆的性质并试图找到计算圆周率的方法。随着时间的推移,许多数学家都致力于寻找更精确的π值,其中包括英国作家John Taylor在其名著《金字塔》中指出的胡夫金字塔与圆周率的关系。现代数学家们已经...

相似回答