如何求逆矩阵,方法如下:
1、待定系数法
待定系数法顾名思义是一种求未知数的方法。将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。
其核心是第一个矩阵第一行的每个数字,各自乘以第二个矩阵第一列对应位置的数字,然后乘积相加就可以得到,换句话说,结果矩阵的第M行与第N列交叉的位置的那个值等于第一个矩阵的第M行与第二个矩阵第N列对应位置的每个数字的乘积之和。
2、伴随矩阵法
A和单位矩阵同时进行初等行(或列)变换,当A变成单位矩阵的时候,单位矩阵就变成了A的逆矩阵。
第2种方法比较简单,而且变换过程还可以发现矩阵A是否可逆(即A的行列式是否等于0)。
矩阵可逆的充要条件是系数行列式不等于零。
3、初等变换法
一般采用的是初等行变换。定义:所谓数域P上矩阵的初等行变换是指下列3种变换:以P中一个非零的数乘矩阵的某一行;把矩阵的某一行的c倍加到另一行,这里c是P中的任意一个数;互换矩阵中两行的位置。
方法是一般从左到右,一列一列处理先把第一个比较简单的(或小)的非零数交换到左上角(其实最后变换也行),用这个数把第一列其余的数消成零处理完第一列后,第一行与第一列就不用管,再用同样的方法处理第二列(不含第一行的数)
一般来说,一个矩阵经过初等行变换后就变成了另一个矩阵,当矩阵A经过初等行变换变成矩阵B时,一般写作A——B,可以证明:任意一个矩阵经过一系列初等行变换总能变成行阶梯型矩阵。
方法是一般从左到右,一列一列处理先把第一个比较简单的(或小)的非零数交换到左上角(其实最后变换也行),用这个数把第一列其余的数消成零处理完第一列后,第一行与第一列就不用管,再用同样的方法处理第二列(不含第一行的数)
计算公式:A^(-1)=(︱A︱)^(-1) A﹡(方阵A的行列式的倒数乘以A的伴随矩阵)。
一般有2种方法。
1、伴随矩阵法。A的逆矩阵=A的伴随矩阵/A的行列式。
2、初等变换法。A和单位矩阵同时进行初等行(或列)变换,当A变成单位矩阵的时候,单位矩阵就变成了A的逆矩阵。
第2种方法比较简单,而且变换过程还可以发现矩阵A是否可逆(即A的行列式是否等于0)。
矩阵可逆的充要条件是系数行列式不等于零。
矩阵求逆,即求矩阵的逆矩阵。矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。逆矩阵又是矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。
设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。其中,E为单位矩阵。
定义法和恒等变形法:
利用定义求逆矩阵:
定义:设A、B都是n阶方阵,如果存在n阶方阵B使得AB=BA=E,则称A为可逆矩阵,而称B为A的逆矩阵。下面举例说明这种方法的应用。
如何快速求矩阵的逆矩阵
方法如下:1、利用定义求逆矩阵 设A、B都是n阶方阵, 如果存在n阶方阵B 使得AB=BA=E, 则称A为可逆矩阵, 而称B为A的逆矩阵。2、运用初等行变换法 将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵B=(A,I])对B施行初等行变换,即对A与I进行完全相同的...
求逆矩阵的三种方法及例题
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。6、两个可逆矩阵的乘积依然可逆。7、矩阵可逆当且仅当它是满秩矩阵。逆矩阵是对方阵定义的,因此逆矩阵一定是方阵。
求逆矩阵的方法
求矩阵的逆的三种方法:1.待定系数法、2.伴随矩阵求逆矩阵、3.初等变换求逆矩阵。在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科...
求逆矩阵的简便方法
求逆矩阵的简便方法如下:1、待定系数法。2、伴随矩阵求逆矩阵。3、初等变换求逆矩阵。待定系数法,一种求未知数的方法。将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出...
逆矩阵的求法有哪些?
1、伴随矩阵法 如果矩阵A可逆,则 的余因子矩阵的转置矩阵。(|A|≠0,|A|为该矩阵对应的行列式的值)A的伴随矩阵为 其中Aij=(-1)i+jMij称为aij的代数余子式。2、初等行变换法 在行阶梯矩阵的基础上,即非零行的第一个非零单元为1,且这些非零单元所在的列其它元素都是0。综上,行最简...
矩阵的逆如何求?
1、待定系数法:利用定义进行求解,设A是一个n阶矩阵,如果存在n阶矩阵B,使得AB=BA=E,则称矩阵A为可逆。注意如果矩阵A是可逆的,其逆矩阵是唯一的。且可逆矩阵一定是方阵。2、伴随矩阵法:首先要判断矩阵是否可逆,需要求矩阵的模和矩阵的伴随矩阵。若可逆求出个元素的代数余子式,伴随矩阵就是...
如何求逆矩阵
如何求逆矩阵,方法如下:1、待定系数法 待定系数法顾名思义是一种求未知数的方法。将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决...
如何求矩阵的逆矩阵?
1、初等变换法 求元索为具体数字的矩阵的逆矩阵,常用初等变换法‘如果A可逆,则A’可通过初等变换,化为单位矩阵 I 用A的逆右乘上式两端,得:可以看到当A通过初等变换化为单位处阵的同时,对单位矩阵I作同样的初等变换,就化为A的逆矩阵。2、伴随矩阵法:此方法求逆知阵,对于小型矩阵,特别是...
如何求逆矩阵?
求逆矩阵的简便方法主要有:1.伴随矩阵法 2.初等变换法 3.定义法 伴随矩阵法:若n阶矩阵A可逆,则在使用此方法的时候首先要判断矩阵A是否可逆,只需要求行列式不等于0就可逆。具体操作方法为:1.首先判断矩阵A是否可逆;2.求每个元素的代数余子式,伴随矩阵就是代数余子式的转置形式 初等变换法:三个步骤...
如何求矩阵的逆?
求矩阵的逆常用的有如下三种做法。经济数学团队帮你解答,请及时采纳。谢谢!一、公式法:A的逆阵=(1\/|A|)A*,其中A*是A的伴随阵。二、初等变换法:对分块矩阵(A,E)做行初等变换,前半部分A化成单位阵E时,后半部分E就化成了A的逆阵。三、猜测法:如果能通过已知条件得出AB=E或BA=E,则...