求助 0-9取其中四个数字 任意组合4位数 求所有数字组合

如题所述

不算0开头,一共4536,超字数部分列出
1023/1024/1025/1026/1027/1028/1029/1032/1034/1035/1036/1037/1038/1039/1042/1043/1045/1046/1047/1048/1049/1052/1053/1054/1056/1057/1058/1059/1062/1063/1064/1065/1067/1068/1069/1072/1073/1074/1075/1076/1078/1079/1082/1083/1084/1085/1086/1087/1089/1092/1093/1094/1095/1096/1097/1098/1203/1204/1205/1206/1207/1208/1209/1230/1234/1235/1236/1237/1238/1239/1240/1243/1245/1246/1247/1248/1249/1250/1253/1254/1256/1257/1258/1259/1260/1263/1264/1265/1267/1268/1269/1270/1273/1274/1275/1276/1278/1279/1280/1283/1284/1285/1286/1287/1289/1290/1293/1294/1295/1296/1297/1298/1302/1304/1305/1306/1307/1308/1309/1320/1324/1325/1326/1327/1328/1329/1340/1342/1345/1346/1347/1348/1349/1350/1352/1354/1356/1357/1358/1359/1360/1362/1364/1365/1367/1368/1369/1370/1372/1374/1375/1376/1378/1379/1380/1382/1384/1385/1386/1387/1389/1390/1392/1394/1395/1396/1397/1398/1402/1403/1405/1406/1407/1408/1409/1420/1423/1425/1426/1427/1428/1429/1430/1432/1435/1436/1437/1438/1439/1450/1452/1453/1456/1457/1458/1459/1460/1462/1463/1465/1467/1468/1469/1470/1472/1473/1475/1476/1478/1479/1480/1482/1483/1485/1486/1487/1489/1490/1492/1493/1495/1496/1497/1498/1502/1503/1504/1506/1507/1508/1509/1520/1523/1524/1526/1527/1528/1529/1530/1532/1534/1536/1537/1538/1539/1540/1542/1543/1546/1547/1548/1549/1560/1562/1563/1564/1567/1568/1569/1570/1572/1573/1574/1576/1578/1579/1580/1582/1583/1584/1586/1587/1589/1590/1592/1593/1594/1596/1597/1598/1602/1603/1604/1605/1607/1608/1609/1620/1623/1624/1625/1627/1628/1629/1630/1632/1634/1635/1637/1638/1639/1640/1642/1643/1645/1647/1648/1649/1650/1652/1653/1654/1657/1658/1659/1670/1672/1673/1674/1675/1678/1679/1680/1682/1683/1684/1685/1687/1689/1690/1692/1693/1694/1695/1697/1698/1702/1703/1704/1705/1706/1708/1709/1720/1723/1724/1725/1726/1728/1729/1730/1732/1734/1735/1736/1738/1739/1740/1742/1743/1745/1746/1748/1749/1750/1752/1753/1754/1756/1758/1759/1760/1762/1763/1764/1765/1768/1769/1780/1782/1783/1784/1785/1786/1789/1790/1792/1793/1794/1795/1796/1798/1802/1803/1804/1805/1806/1807/1809/1820/1823/1824/1825/1826/1827/1829/1830/1832/1834/1835/1836/1837/1839/1840/1842/1843/1845/1846/1847/1849/1850/1852/1853/1854/1856/1857/1859/1860/1862/1863/1864/1865/1867/1869/1870/1872/1873/1874/1875/1876/1879/1890/1892/1893/1894/1895/1896/1897/1902/1903/1904/1905/1906/1907/1908/1920/1923/1924/1925/1926/1927/1928/1930/1932/1934/1935/1936/1937/1938/1940/1942/1943/1945/1946/1947/1948/1950/1952/1953/1954/1956/1957/1958/1960/1962/1963/1964/1965/1967/1968/1970/1972/1973/1974/1975/1976/1978/1980/1982/1983/1984/1985/1986/1987/2013/2014/2015/2016/2017/2018/2019/2031/2034/2035/2036/2037/2038/2039/2041/2043/2045/2046/2047/2048/2049/2051/2053/2054/2056/2057/2058/2059/2061/2063/2064/2065/2067/2068/2069/2071/2073/2074/2075/2076/2078/2079/2081/2083/2084/2085/2086/2087/2089/2091/2093/2094/2095/2096/2097/2098/2103/2104/2105/2106/2107/2108/2109/2130/2134/2135/2136/2137/2138/2139/2140/2143/2145/2146/2147/2148/2149/2150/2153/2154/2156/2157/2158/2159/2160/2163/2164/2165/2167/2168/2169/2170/2173/2174/2175/2176/2178/2179/2180/2183/2184/2185/2186/2187/2189/2190/2193/2194/2195/2196/2197/2198/2301/2304/2305/2306/2307/2308/2309/2310/2314/2315/2316/2317/2318/2319/2340/2341/2345/2346/2347/2348/2349/2350/2351/2354/2356/2357/2358/2359/2360/2361/2364/2365/2367/2368/2369/2370/2371/2374/2375/2376/2378/2379/2380/2381/2384/2385/2386/2387/2389/2390/2391/2394/2395/2396/2397/2398/2401/2403/2405/2406/2407/2408/2409/2410/2413/2415/2416/2417/2418/2419/2430/2431/2435/2436/2437/2438/2439/2450/2451/2453/2456/2457/2458/2459/2460/2461/2463/2465/2467/2468/2469/2470/2471/2473/2475/2476/2478/2479/2480/2481/2483/2485/2486/2487/2489/2490/2491/2493/2495/2496/2497/2498/2501/2503/2504/2506/2507/2508/2509/2510/2513/2514/2516/2517/2518/2519/2530/2531/2534/2536/2537/2538/2539/2540/2541/2543/2546/2547/2548/2549/2560/2561/2563/2564/2567/2568/2569/2570/2571/2573/2574/2576/2578/2579/2580/2581/2583/2584/2586/2587/2589/2590/2591/2593/2594/2596/2597/2598/2601/2603/2604/2605/2607/2608/2609/2610/2613/2614/2615/2617/2618/2619/2630/2631/2634/2635/2637/2638/2639/2640/2641/2643/2645/2647/2648/2649/2650/2651/2653/2654/2657/2658/2659/2670/2671/2673/2674/2675/2678/2679/2680/2681/2683/2684/2685/2687/2689/2690/2691/2693/2694/2695/2697/2698/2701/2703/2704/2705/2706/2708/2709/2710/2713/2714/2715/2716/2718/2719/2730/2731/2734/2735/2736/2738/2739/2740/2741/2743/2745/2746/2748/2749/2750/2751/2753/2754/2756/2758/2759/2760/2761/2763/2764/2765/2768/2769/2780/2781/2783/2784/2785/2786/2789/2790/2791/2793/2794/2795/2796/2798/2801/2803/2804/2805/2806/2807/2809/2810/2813/2814/2815/2816/2817/2819/2830/2831/2834/2835/2836/2837/2839/2840/2841/2843/2845/2846/2847/2849/2850/2851/2853/2854/2856/2857/2859/2860/2861/2863/2864/2865/2867/2869/2870/2871/2873/2874/2875/2876/2879/2890/2891/2893/2894/2895/2896/2897/2901/2903/2904/2905/2906/2907/2908/2910/2913/2914/2915/2916/2917/2918/2930/2931/2934/2935/2936/2937/2938/2940/2941/2943/2945/2946/2947/2948/2950/2951/2953/2954/2956/2957/2958/2960/2961/2963/2964/2965/2967/2968/2970/2971/2973/2974/2975/2976/2978/2980/2981/2983/2984/2985/2986/2987/3012/3014/3015/3016/3017/3018/3019/3021/3024/3025/3026/3027/3028/3029/3041/3042/3045/3046/3047/3048/3049/3051/3052/3054/3056/3057/3058/3059/3061/3062/3064/3065/3067/3068/3069/3071/3072/3074/3075/3076/3078/3079/3081/3082/3084/3085/3086/3087/3089/3091/3092/3094/3095/3096/3097/3098/3102/3104/3105/3106/3107/3108/3109/3120/3124/3125/3126/3127/3128/3129/3140/3142/3145/3146/3147/3148/3149/3150/3152/3154/3156/3157/3158/3159/3160/3162/3164/3165/3167/3168/3169/3170/3172/3174/3175/3176/3178/3179/3180/3182/3184/3185/3186/3187/3189/3190/3192/3194/3195/3196/3197/3198/3201/3204/3205/3206/3207/3208/3209/3210/3214/3215/3216/3217/3218/3219/3240/3241/3245/3246/3247/3248/3249/3250/3251/3254/3256/3257/3258/3259/3260/3261/3264/3265/3267/3268/3269/3270/3271/3274/3275/3276/3278/3279/3280/3281/3284/3285/3286/3287/3289/3290/3291/3294/3295/3296/3297/3298/3401/3402/3405/3406/3407/3408/3409/3410/3412/3415/3416/3417/3418/3419/3420/3421/3425/3426/3427/3428/3429/3450/3451/3452/3456/3457/3458/3459/3460/3461/3462/3465/3467/3468/3469/3470/3471/3472/3475/3476/3478/3479/3480/3481/3482/3485/3486/3487/3489/3490/3491/3492/3495/3496/3497/3498/3501/3502/3504/3506/3507/3508/3509/3510/3512/3514/3516/3517/3518/3519/3520/3521/3524/3526/3527/3528/3529/3540/3541/3542/3546/3547/3548/3549/3560/3561/3562/3564/3567/3568/3569/3570/3571/3572/3574/3576/3578/3579/3580/3581/3582/3584/3586/3587/3589/3590/3591/3592/3594/3596/3597/3598/3601/3602/3604/3605/3607/3608/3609/3610/3612/3614/3615/3617/3618/3619/3620/3621/3624/3625/3627/3628/3629/3640/3641/3642/3645/3647/3648/3649/3650/3651/3652/3654/3657/3658/3659/3670/3671/3672/3674/3675/3678/3679/3680/3681/3682/3684/3685/3687/3689/3690/3691/3692/3694/3695/3697/3698/3701/3702/3704/3705/3706/3708/3709/3710/3712/3714/3715/3716/3718/3719/3720/3721/3724/3725/3726/3728/3729/3740/3741/3742/3745/3746/3748/3749/3750/3751/3752/3754/3756/3758/3759/3760/3761/3762/3764/3765/3768/3769/3780/3781/3782/3784/3785/3786/3789/3790/3791/3792/3794/3795/3796/3798/3801/3802/3804/3805/3806/3807/3809/3810/3812/3814/3815/3816/3817/3819/3820/3821/3824/3825/3826/3827/3829/3840/3841/3842/3845/3846/3847/3849/3850/3851/3852/3854/3856/3857/3859/3860/3861/3862/3864/3865/3867/3869/3870/3871/3872/3874/3875/3876/3879/3890/3891/3892
....来自:求助得到的回答
温馨提示:内容为网友见解,仅供参考
第1个回答  2011-10-19
你是要总共多少种组合吧
这是道排列组合题,由于0不能在千位,所以一共有9×9×8×7=4536种组合。
第2个回答  2011-10-19
0123
0234
0

求助0-9取其中四个数字 任意组合4位数 求所有数字组合
不算0开头,一共4536,超字数部分列出 1023\/1024\/1025\/1026\/1027\/1028\/1029\/1032\/1034\/1035\/1036\/1037\/1038\/1039\/1042\/1043\/1045\/1046\/1047\/1048\/1049\/1052\/1053\/1054\/1056\/1057\/1058\/1059\/1062\/1063\/1064\/1065\/1067\/1068\/1069\/1072\/1073\/1074\/1075\/1076\/1078\/1079\/1082\/1083\/1084\/1085\/1086\/1...

0到9取其中任意4个数字,组成4位数,能有多少个?
有4536种 0不能做千位,千位有9种选择,百位有9种,十位8种,个位7种 9×9×8×7=4536

0--9全部的数字任意组合成4位数,能组多少个。分别是什么。
很简单,如果可以选择重复的数字,比如这个四位数字可以包括0000、1111、1122之类的,一共可以有10000种排列方式 如果这个四位数种的数字不重复,比如1234、3254之类,一共可以有10*9*8*7=5040种排列方式

从0到9中取四个不重复的数字,问他们组成一个四位偶数的概率 (用排列组 ...
第一位从非0的9个数中选1个A(9,1), 那么还剩下包括0在内的9个数字,在后三位全排列A(9,3)四位数如果是偶数,那么末尾必须是0,2,4,6,8中的一个,分成两部分 末尾是0的情况为:A(9,3) (前三位全排列)末尾不是0的情况为:A(9,1)*A(4,1)*A(8,2) (第一位9个数选1...

从0到9这十个数字中选取4个数字能组成多少个四位数?
排列组合问题 注意四位数首位不能为0 若数字可以重复,可组成的四位数个数为 9×10×10×10=9000 若数字不可以重复,可组成的四位数个数为 9×9×8×7=4536

从0到9任意4个数字组合在一起有多少组,可以用零开头,例如0000也行_百度...
可以把这个想成0~9数字的转盘 用转盘转出4个数,使其组成4位数 应为要转4次,并且每次转的可能率为10分之1 所以转4次可以列出算式:1\\10*1\\10*1\\10*1\\10=1\\10000 所以可能率是10000

0--9全部的数字任意组合成4位数,能组多少个.分别是什么.
0-9 都在 的四位数 其实就是 1000-9999 共9000个数,如果限制数字重复就是千、百、十、个位的数字都不能同,则能组4536 个数

从0…9中任取四个数字组成的四位数使其能够被3整除,共有多少种?_百度...
共有:1050种 余数0:0、3、6、9;余数1:1、4、7;余数2:2、5、8。1. 3个余数1+1个余数0---3*P[3,3]+3*P[4,4]=84种。3个余数2+1个余数0---同上84种。2. 4个余数0---P[4,4]-P[3,3]=18种。3. 1个余数1+1个余数2+2个余数0---含0:3*3*3*3*P[3,3]=...

0到9每4个一组的具体数字组合是多少啊
若要求是一个四位数则:可重复数字:9*10*10*10 不可重复数字:=无0的情况+有0的情况=(A上4下9)+3*(A上3下9).若没有要求必须是一个四位数,则为10*10*10*10.

...同的数字,组成无重复的4位数且能被3整除的四位数有多少个?_百度知 ...
选择搭配时依照从小至大的原则,即所选的四个数字,每次选择的数字必须比上一个数字要大:前两个数选择0、1的有9种搭配,每种搭配有18种组合,共9*18种组合;前两个数选择0、2的有7种搭配,每种搭配有18种组合,共7*18种组合;前两个数选择0、3的有5种搭配,每种搭配有18种组合,共5*18...

相似回答