怎样解二元一次方程?着重介绍十字相乘法、公式法、配方法、开方法,并举例说明!
十字相乘法
如:x2+(p+q)x+pq=(x+p)(x+q)
解法分解因式法因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
举例:提公因式法
1.解方程:x²+2x+1=0
解:利用完全平方公式因式解得:(x+1)²=0
解得:x1= x2=-1
2.解方程x(x+1)-2(x+1)=0
解:利用提公因式法解得:(x-2)(x+1)=0
即 x-2=0 或 x+1=0
∴ x1=2,x2=-1
3.解方程x²-4=0
解:(x+2)(x-2)=0
x+2=0或x-2=0
∴ x1=-2,x2= 2
十字相乘法公式
折叠x²+(p+q)x+pq=(x+p)(x+q)
例:
1. ab+2b+a-b- 2
=ab+a+b²-b-2
=a(b+1)+(b-2)(b+1)
=(b+1)(a+b-2)
公式法
(可解全部一元二次方程)求根公式
首先要通过Δ=b²-4ac的根的判别式来判断一元二次方程有几个根
1.当Δ=b²-4ac<0时 x无实数根(初中)
2.当Δ=b²-4ac=0时 x有两个相同的实数根 即x1=x2
3.当Δ=b²-4ac>0时 x有两个不相同的实数根
当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b²-4ac)}/2a
来求得方程的根
配方法
(可解全部一元二次方程)
如:解方程:x²+2x-3=0
解:把常数项移项得:x²+2x=3
等式两边同时加1(构成完全平方式)得:x²+2x+1=4
因式分解得:(x+1)²=4
解得:x1=-3,x2=1
用配方法的小口诀:
二次系数化为一
常数要往右边移
一次系数一半方
两边加上最相当
开方法
(可解部分一元二次方程)
如:x²-24=1
解:x²=25
x=±5
∴x1=5 x2=-5
均值代换法
(可解部分一元二次方程)
ax²+bx+c=0
同时除以a,得到x²+bx/a+c/a=0
设x1=-b/(2a)+m,x2=-b/(2a)-m (m≥0)
根据x1·x2=c/a
求得m。
再求得x1, x2。
如:x²-70x+825=0
均值为35,设x1=35+m,x2=35-m (m≥0)
x1·x2=825
所以m=20
所以x1=55, x2=15。
一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)(韦达定理)
一般式:ax²+bx+c=0的两个根x1和x2关系:
x1+x2= -b/a
x1·x2=c/a
简单解法(总结)
1.看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑平方公式法,最后考虑十字相乘 法)
2.看是否可以直接开方解
3.使用公式法求解
4.最后再考虑配方法(配方法虽然可以解全部一元二次方程,但是有时候解题太麻烦)。 如果要参加竞赛,可 按如下顺序:
A.因式分解
B.韦达定理
C.判别式
D.公式法
E.配方法
F.开平方
G.求根公式
H.表示法
中考数学公式-一元二次方程公式经过上文的讲述我们已经知道了,希望同学们掌握好这一公式,进而学好中考数学。
二元一次方程万能公式:b^2-4ac>=0。
含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。使方程左右两边相等的未知数的值叫做方程的解。
方程有实数根,否则是虚数根。实数解是:[-b+sqrt(b^2-4ac)]/2a,[-b-sqrt(b^2-4ac)]/2a。
二元一次方程的含义
含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式与ax+by=c(a、b≠0)的标准式,否则不为二元一次方程。
适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解。每个二元一次方程都有无数对方程的解,由二元一次方程组成的二元一次方程组才可能有唯一解,二元一次方程组常用加减消元法或代入消元法转换为一元一次方程进行求解。
怎么解二元一次方程
(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解. 这种解方程组的方法叫做代入消元法,简称代入法。(2)代入法解二元一次方程组的步骤 ①选取一个系数较简单的二元一次方程变形,用...
二元一次方程的解有几种方法?
一元二次方程四中解法。一、公式法。二、配方法。三、直接开平方法。四、因式分解法。公式法1先判断△=b_-4ac,若△<0原方程无实根;2若△=0,原方程有两个相同的解为:X=-b\/(2a);3若△>0,原方程的解为:X=((-b)±√(△))\/(2a)。配方法。先把常数c移到方程右边得:aX_...
二元一次方程怎么解 详细过程
1、整体代入法:整体代入法是用含未知数的表达式代入方程进行消元.有些方程组并不一定能直接应用这种解法,不过,我们可以创造条件进行整体代入。2、换元法:换元法就是设出一个辅助未知数,分别用含有这个未知数的代数式表示原方程组中未知数的值,把二元一次方程组转化为一元一次方程组进行求解,换...
二元一次方程的解法3种
1、代入消元法 将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解。2、图像法 二元一次方程组还可以用做图像的方法,即将相应二元一次方程改写成一次函数的表达式在同坐标系内画出图像,两条直线的...
解二元一次方程的步骤
解二元一次方程的步骤如下:1、代入消元法 从方程中选一个系数比较简单的方程,将这个方程中的未知数用另一个未知数的代数式来表示,如用x表示y,可写成y=ax+b;将y=ax+b代入另一个方程,消去y,得到一个关于x的一元一次方程解这个一元一次方程,求出x的值;把求得的x的值代入y=ax+b中,求出y...
解二元一次方程 公式法的公式是什么?
x=(-b±√(b²-4ac))\/2a。设一个一元二次方程为:ax^2+bx+c=0,其中a不为0,因为要满足此方程为一元二次方程所以a不能等于0。求根公式为:x=(-b±√(b²-4ac))\/2a 。
如何求二元一次方程组的解?
二元二次方程的解法如下:1、代入法 由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。2、因式分解法 在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。3、加减法 如果方程组里两个方程有一个未知数的同次项的系数成比例...
二元一次方程的解法
代入法解二元一次方程组的步骤 1、选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数。2、将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的)。3、解...
二元一次方程的解法是什么?
1、解二元一次方程组的基本思路是消元,即把二元变为一元。2、方法:带入消元法和加减消元法。①带入消元法解二元一次方程组:②加减消元法解二元一次方程组:注意事项 (1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。(2)二元一次方程组的解:二...
二元一次方程的解法
解二元一次方程组有两种方法:(1)代入消元法;(2)加减消元法(1)代入消元法 例:解方程组:x+y=5① 6x+13y=89② 由①得 x=5-y③ 把③代入②,得 6(5-y)+13y=89 即 y=59\/7 把y=59\/7代入③,得x=5-59\/7 即 x=-24\/7 ∴ x=-24\/7 y=59\/7 为方程组的解 我们把...