有个伙计和你说的刚好相反啊
到底哪个对?
麻烦您再看看 谢谢
函数的连续和可导的关系
函数的可导性与连续性的关系
函数的可导性与连续性的关系:可导一定连续,连续不一定可导。连续是可导的必要条件,但不是充分条件,由可导可推出连续,由连续不可以推出可导。可以说:因为可导,所以连续。不能说:因为连续,所以可导。先看几个定义:1、连续点:如果函数在某一邻域内有定义,且x->x0时limf(x)=f(x0),就称x...
函数可导是否一定连续?
可导一定连续,连续不一定可导。连续是可导的必要条件,但不是充分条件,由可导可推出连续,由连续不可以推出可导。可以说:因为可导,所以连续。不能说:因为连续,所以可导。可导必连续证明如下图 连续不一定可导。函数可导,导函数不一定连续。如y=³√x是在R上连续的,导函数为y'=1\/(...
可导和连续的关系是什么?
关于函数的可导导数和连续的关系:1、连续的函数不一定可导。2、可导的函数是连续的函数。3、越是高阶可导函数曲线越是光滑。4、存在处处连续但处处不可导的函数。左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的...
可导和连续的关系
1、连续的函数不一定可导.2、可导的函数是连续的函数.3、越是高阶可导函数曲线越是光滑.4、存在处处连续但处处不可导的函数.左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在).连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次....
函数的连续与可导有什么联系和区别?
关于函数的可导导数和连续的关系:1、连续的函数不一定可导。2、可导的函数是连续的函数。3、越是高阶可导函数曲线越是光滑。4、存在处处连续但处处不可导的函数。在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏...
函数可导与连续的关系是什么?
可导与连续的关系:可导必连续,连续不一定可导;可微与连续的关系:可微与可导是一样的;可积与连续的关系:可积不一定连续,连续必定可积;可导与可积的关系:可导一般可积,可积推不出一定可导;可微=>可导=>连续=>可积
连续与可导的关系是什么?
连续与可导的关系:1、连续的函数不一定可导;2、可导的函数是连续的函数;3、越是高阶可导函数曲线越是光滑;4、存在处处连续但处处不可导的函数。可导:微积分是在17世纪末由英国物理学家、数学家牛顿和德国数学家莱布尼茨建立起来的。微积分是由微分学和积分学两部分组成,微分学是基础。微分学的基本...
函数连续和可导的关系
函数连续和可导的关系是可导性一定意味着连续性。也就是说,如果一个函数在某点可导,那么它在该点也是连续的。可导性:函数f(x)在点x处可导,意味着它在该点的导数存在,即导数极限 f′(x)=lim(h→0)[f(x+h)−f(x)]\/h存在。连续性:函数f(x)在点x处连续,意味着在该点的函数...
可导和连续是什么关系?可导必连续吗?
可微->可导 或者 可微-> 连续 其他关系不成立,但是一元时 可微=可导 -> 连续 可导与连续的关系:可导必连续,连续不一定可导;可微与连续的关系:可微与可导是一样的;可积与连续的关系:可积不一定连续,连续必定可积;可导与可积的关系:可导一般可积,可积推不出一定可导;...
函数连续与可导有什么关系?
一、连续与可导的关系:1. 连续的函数不一定可导;2. 可导的函数是连续的函数;3.越是高阶可导函数曲线越是光滑;4.存在处处连续但处处不可导的函数。左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,...