数学小升初试卷及答案

如题所述

亲爱小朋友们,今天为你准备了小升初数学试卷及答案,相信大家一定能够努力做、开动脑筋,做出满意的答卷。加油啊!!!

1.老师在黑板上写了13个自然数,让小王计算平均数(保留两位小数),小王计算出的答案上12.43。老师说最后一位数字错了,其他的数字都对。请问正确的答案应该是________。

2.老王的体重的2/5与小李体重的2/3相等。老王的体重的3/7比小李体重的3/4轻1.5千克,则老王的体重为_______千克,小李的体重为________千克。

3.在一次考试中,某班数学得100分的有17人,语文得100的有13人,两科都得100分的有7人,两科至少有一科得100分的共有_________人;全班45人中两科都不得100的有__________人。

4.有一水果店进了6筐水果,分别装着香蕉和橘子,重量分别为8,9,16,20,22,27千克,当天只卖出一筐橘子,在剩下的五筐中香蕉的重量是橘子重量的两倍,问当天水果店进的有___________筐是香蕉。

5.如图,在半圆的边界周围有6个点A1,A2,A3,A4,A5,A6,其中A1,A2,A3在半圆的直径上,问以这6个点为端点可以组成___________个三角形。

6.有100名学生要到离学校33千米的某公园,学生的步行速度是每小时5千米,学校只有一辆能坐25人的汽车,汽车的速度是每小时55千米,为了花最短的时间到达公园,决定采用步行与乘车相结合的办法,那么最短时间为__________。

7.有48本书分给两组小朋友。已知第二组比第一组多5人,若把书全部分给第一组,每人4本,有剩余;每人5本,书不够,又若全给第二组,每人3本,有剩余;每人4本,书不够,那么第二组有___________人。

8.如图,已知正方形和三角形有一部分重叠,三角形乙比三角形甲面积大7平方厘米,则x=___________厘米。

9.学校某一天上午,要排数学、语文、外语、体育四节课。数学只能排第一、二节,语文只能排第二、三节,外语必须排在体育的前面。满足以上要求的课表有_________种排法。

10.甲、乙两个学生从学校出发,沿着同一方向走一个体育场,甲先以一半时间从每小时4千米行走,另一半时间以每小时5千米行走;乙先以一半路程以每小时4千米行走,另一半路程以每小时5千米行走,那么先到体育场的是____________。

11.五年级有4个班,每个班有两个班长,每次召开班长会议时各班参加一名班长,参加第一次议的是A,B,C,D;参加第二次会议都的是E,B,F,D;参加第三次会议的是A,E,B,G;而H三次会议都没参加。请问每个班的两位班长各是谁?

12.1984年某人的岁数正好等于他出生年份的数字之和,那么这人1984年__________岁。

参考答案:

1、12.46 2、70;42 3、22 4、3 5、19 6、2.6

7、15 8、9 9、3 10、甲 11、A-F,B-H,C-E,D-G 12、20
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-03-08
小升初数学系列综合模拟试卷(二十九)
一、填空题:

2.3支铅笔和8支圆珠笔的价钱是11.9元,7支铅笔和6支圆珠笔的价钱是11.3元,一支铅笔和一支钢笔的价钱是______元.
3.比较下面两个积的大小:
A=9.5876×1.23456,B=9.5875×1.23457,则A______B.
第______个分数.
5.从1,2,3,4,…,1997这些自然数中,最多可以取______个数,能使这些数中任意两个数的差都不等于8.
6.用1至9这九个数字每个数字各一次,组成三个能被9整除的三位数,要求这三个数的和尽可能大,这三个数分别是______.
7.如图,AD=DE=EC,F是BC中点,G是FC中点,如果三角形ABC的面积是24平方厘米,则阴影部分是______平方厘米.
  
8.某次考试,A、B、C、D、E五人的平均成绩是90分,A、B两人的平均成绩是96分,C、D两人的平均成绩是92.5分,A、D两人的平均成绩是97.5分,且C比D得分少15分,则B的分数是______.
9.某年级学生人数在200至250之间,若列队4人一排余1人,5人一排余3人,6人一排余5人,则这个年级有______名学生.
10.商店用相同的费用购进甲、乙两种不同的糖果.已知甲种糖果每公斤18元,乙种糖果每公斤12元,如果把这两种糖果混在一起成为什锦糖,那么这种糖每公斤的成本是______元.
二、解答题:
1.有一个棱长是10厘米的正方体木块,在它的上、左、前三个面中心分别穿一个3厘米见方的孔,直至对面.求穿孔后木块的体积.

2.分母是964的最简真分数共有多少个?

3.一个城市交通道路如图,数字表示各段路的路程(单位:千米),求出图中从A到F的最短路程.

4.两名运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度每秒0.6米,他们同时分别从游泳池的两端出发,来回共游了10分,如果不计转身时间,那么这段时间内共相遇多少次?

答案
一、填空题:

2.1.8
由3支铅笔+8支圆珠笔=11.9元7支铅笔+ 6支圆珠笔=11.3元
得21支铅笔+ 56支圆珠笔= 83.3元21支铅笔+ 18支圆珠笔=33.9元
(56- 18)支圆珠笔=83.3-33.9
1支圆珠笔= 1.3元
所以1支铅笔= (11.9- 1.3×8)÷3=0.5(元)故1支铅笔和1支钢笔的价钱是1.8元.
3.>
A=9.5875×1.23456+0.0001×1.23456
B=9.5875×1.23456+9.5875×0.00001
因为 0.0001×1.23456>9.5875×0.00001所以A>B.

将分母相同的分成一组,第1组1个数,第2组3个数,第3组5个数,……,从第2组起每一组比前一组多2个数,每一组分子的规律从1开始逐项加1,
  和倒数第6个分数,在这串数中是

5.1000
每16个连续自然数中,最多可以取8个数,使得每两个数的差不等于8.
1997÷16=124…13
把1至1997的自然数分成每16个连续自然数一组,最后剩13个数为一组,共组成125组.即
1,2,3,4,…,16;
17, 18, 19, 20,…, 32;
33,34,35,36,…,48;

1969,1967,1968,…,1984;
1985,1986,…,1997.
每一组中取前8个数,共取出8×125=1000(个)使得其中任意两个数的差都不等于8.
6.954、873、621
1+ 2+ 3+ …+ 9= 45= 9×5,有5个9,由于每个三位数的各个数位上的数字之和不会超过3个9,所以这三个三位数的每一个数位上数字之和只能分别是9、 18、 18(合起来是5个9).
要使这三个三位数的和尽可能大,各个数位上的数字之和是9的最大三位数是621,另两个数只能由9、8、7、5、4、3组成,显然百位应尽可能大,得到954、873.
所以这三个数分别是954、873、621.
7.14
因为AD= DE= EC,所以

又因为BF=FC,所以

由于FG=GC,所以

S阴影面积=S△ABD+S△DFE+S△GCE
=8+4+2
=14(平方厘米)
8.97
E得分是:90 × 5-96 × 2-92.5 × 2=73(分);
C得分是:(92.5×2-15)÷2=85(分);
D得分是:85+15=100(分);
A得分是:97.5×2-100=95(分);
B得分是:96×2-95=97(分).
9.233人
被4除余1的自然数有5,9,13,17,21,25,… ,其中被5除余3的自然数有13,33,53,73,… ,(相邻两数后一个数比前一个多20),其中被6除余5的自然数有53,…,且53是被4除余1,被5除余3,被6除余5的最小的一个,又4、5、6的最小公倍数是60,符合上述条件的任意整数写成60n+53,n是整数,所以这个年级的人数为:
n=3,60×3+53=233(人)
10.14.4
12、18的最小公倍数是36.为了解题方便,假设分别用36元购进甲、乙两种糖果,可购进甲种糖果36÷18=2公斤,购进乙种糖果36÷12=3公斤,两种糖果混合后总价是36×2元,总重量2+3公斤,得到什锦糖的成本是:
36×2÷(2+3)=14.4(元)
二、解答题:
1.穿孔后木块的体积是784立方厘米.穿一个孔的体积是3×3×10=90立方厘米,穿三个孔时,体积应是:
90×3-3×3×3×2=216(立方厘米)
所以穿孔后木块的体积是:
10×10×10-216=784(立方厘米)
2.分母是964的最简真分数有480个.
因为964=22×241.所以分母是964的最简真分数中不能有偶数及241的倍数,小于964的偶数有964÷2-1=481个,是241的倍数有3个,其中482是偶数,分母是964的最简真分数有:
963-481-3+1=480(个)
3.从A到F的最短路程是13千米
从A到F有许多条路,要确定一条最短的路线,可以采用排除的方法,逐步去掉比较长的道路,最后确定一条由A到F的最短路线,根据图中给出的路程的长度,有些明显较长的路可以不去考虑.从A出发到F,有三条路线相对较短,沿AIHGF路线走,它的长度是:
7+1+5+2=15(千米)
沿ABCEF路线走,它的长度是.
5+2+5+2=14(千米)
沿AJKGF路线走,它的长度是:
5+4+2+2=13(千米)
所以从A到F的最短路程是13千米.
4.10分钟内共相遇20次
甲游30米需要30÷1=30秒,乙游30米需要30÷0.6=50秒,经过150秒,甲、乙两人同时游到两端,每隔150秒他们相遇的情况重复出现.如图,实线表示甲,虚线表示乙,两线的交点就是甲、乙相遇的地点(游泳池的两端用两条线段表示),可以看出经过150秒,甲游了5个30米,乙游了3个30米,共相遇了5次.以150秒为一个周期,10分钟是600秒,600÷150=4,有4个150秒,所以在10分钟内相遇的次数是:5×4=20(次).追问

是不是从其他地方搞来的,是的话说下地址,好的话评为最佳答案

追答

自己的

本回答被提问者采纳
第2个回答  2012-04-25
小升初数学系列综合模拟试卷(二十九)
一、填空题:

2.3支铅笔和8支圆珠笔的价钱是11.9元,7支铅笔和6支圆珠笔的价钱是11.3元,一支铅笔和一支钢笔的价钱是______元.
3.比较下面两个积的大小:
A=9.5876×1.23456,B=9.5875×1.23457,则A______B.
第______个分数.
5.从1,2,3,4,…,1997这些自然数中,最多可以取______个数,能使这些数中任意两个数的差都不等于8.
6.用1至9这九个数字每个数字各一次,组成三个能被9整除的三位数,要求这三个数的和尽可能大,这三个数分别是______.
7.如图,AD=DE=EC,F是BC中点,G是FC中点,如果三角形ABC的面积是24平方厘米,则阴影部分是______平方厘米.
  
8.某次考试,A、B、C、D、E五人的平均成绩是90分,A、B两人的平均成绩是96分,C、D两人的平均成绩是92.5分,A、D两人的平均成绩是97.5分,且C比D得分少15分,则B的分数是______.
9.某年级学生人数在200至250之间,若列队4人一排余1人,5人一排余3人,6人一排余5人,则这个年级有______名学生.
10.商店用相同的费用购进甲、乙两种不同的糖果.已知甲种糖果每公斤18元,乙种糖果每公斤12元,如果把这两种糖果混在一起成为什锦糖,那么这种糖每公斤的成本是______元.
二、解答题:
1.有一个棱长是10厘米的正方体木块,在它的上、左、前三个面中心分别穿一个3厘米见方的孔,直至对面.求穿孔后木块的体积.

2.分母是964的最简真分数共有多少个?

3.一个城市交通道路如图,数字表示各段路的路程(单位:千米),求出图中从A到F的最短路程.

4.两名运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度每秒0.6米,他们同时分别从游泳池的两端出发,来回共游了10分,如果不计转身时间,那么这段时间内共相遇多少次?

答案
一、填空题:

2.1.8
由3支铅笔+8支圆珠笔=11.9元7支铅笔+ 6支圆珠笔=11.3元
得21支铅笔+ 56支圆珠笔= 83.3元21支铅笔+ 18支圆珠笔=33.9元
(56- 18)支圆珠笔=83.3-33.9
1支圆珠笔= 1.3元
所以1支铅笔= (11.9- 1.3×8)÷3=0.5(元)故1支铅笔和1支钢笔的价钱是1.8元.
3.>
A=9.5875×1.23456+0.0001×1.23456
B=9.5875×1.23456+9.5875×0.00001
因为 0.0001×1.23456>9.5875×0.00001所以A>B.

将分母相同的分成一组,第1组1个数,第2组3个数,第3组5个数,……,从第2组起每一组比前一组多2个数,每一组分子的规律从1开始逐项加1,
  和倒数第6个分数,在这串数中是

5.1000
每16个连续自然数中,最多可以取8个数,使得每两个数的差不等于8.
1997÷16=124…13
把1至1997的自然数分成每16个连续自然数一组,最后剩13个数为一组,共组成125组.即
1,2,3,4,…,16;
17, 18, 19, 20,…, 32;
33,34,35,36,…,48;

1969,1967,1968,…,1984;
1985,1986,…,1997.
每一组中取前8个数,共取出8×125=1000(个)使得其中任意两个数的差都不等于8.
6.954、873、621
1+ 2+ 3+ …+ 9= 45= 9×5,有5个9,由于每个三位数的各个数位上的数字之和不会超过3个9,所以这三个三位数的每一个数位上数字之和只能分别是9、 18、 18(合起来是5个9).
要使这三个三位数的和尽可能大,各个数位上的数字之和是9的最大三位数是621,另两个数只能由9、8、7、5、4、3组成,显然百位应尽可能大,得到954、873.
所以这三个数分别是954、873、621.
7.14
因为AD= DE= EC,所以

又因为BF=FC,所以

由于FG=GC,所以

S阴影面积=S△ABD+S△DFE+S△GCE
=8+4+2
=14(平方厘米)
8.97
E得分是:90 × 5-96 × 2-92.5 × 2=73(分);
C得分是:(92.5×2-15)÷2=85(分);
D得分是:85+15=100(分);
A得分是:97.5×2-100=95(分);
B得分是:96×2-95=97(分).
9.233人
被4除余1的自然数有5,9,13,17,21,25,… ,其中被5除余3的自然数有13,33,53,73,… ,(相邻两数后一个数比前一个多20),其中被6除余5的自然数有53,…,且53是被4除余1,被5除余3,被6除余5的最小的一个,又4、5、6的最小公倍数是60,符合上述条件的任意整数写成60n+53,n是整数,所以这个年级的人数为:
n=3,60×3+53=233(人)
10.14.4
12、18的最小公倍数是36.为了解题方便,假设分别用36元购进甲、乙两种糖果,可购进甲种糖果36÷18=2公斤,购进乙种糖果36÷12=3公斤,两种糖果混合后总价是36×2元,总重量2+3公斤,得到什锦糖的成本是:
36×2÷(2+3)=14.4(元)
二、解答题:
1.穿孔后木块的体积是784立方厘米.穿一个孔的体积是3×3×10=90立方厘米,穿三个孔时,体积应是:
90×3-3×3×3×2=216(立方厘米)
所以穿孔后木块的体积是:
10×10×10-216=784(立方厘米)
2.分母是964的最简真分数有480个.
因为964=22×241.所以分母是964的最简真分数中不能有偶数及241的倍数,小于964的偶数有964÷2-1=481个,是241的倍数有3个,其中482是偶数,分母是964的最简真分数有:
963-481-3+1=480(个)
3.从A到F的最短路程是13千米
从A到F有许多条路,要确定一条最短的路线,可以采用排除的方法,逐步去掉比较长的道路,最后确定一条由A到F的最短路线,根据图中给出的路程的长度,有些明显较长的路可以不去考虑.从A出发到F,有三条路线相对较短,沿AIHGF路线走,它的长度是:
7+1+5+2=15(千米)
沿ABCEF路线走,它的长度是.
5+2+5+2=14(千米)
沿AJKGF路线走,它的长度是:
5+4+2+2=13(千米)
所以从A到F的最短路程是13千米.
4.10分钟内共相遇20次
甲游30米需要30÷1=30秒,乙游30米需要30÷0.6=50秒,经过150秒,甲、乙两人同时游到两端,每隔150秒他们相遇的情况重复出现.如图,实线表示甲,虚线表示乙,两线的交点就是甲、乙相遇的地点(游泳池的两端用两条线段表示),可以看出经过150秒,甲游了5个30米,乙游了3个30米,共相遇了5次.以150秒为一个周期,10分钟是600秒,600÷150=4,有4个150秒,所以在10分钟内相遇的次数是:5×4=20(次).
第3个回答  2012-04-14
一、填空。

  1、在数轴上,所有的( )数都在0的右边,也就是( )数都比0大,而( )数都比0小。

  2、如图,长方形和圆的面积相等,圆

  的周长是25.12cm,则阴影部分的面积

  是( )㎝2。

  3、六(1)班有a名同学,今天做早操有b名同学没有出勤,出勤率是( ),如果a=40,出勤率是95%,那么b是( )人。

  4、用5、6、7、8这四个数字可以写出( ) 个不同的四位数。

  5、1到9的九个数字中,相邻的两个数都是质数的是( )和( ),相邻的两个数都是合数的是( )和( )。

  6、配制一种盐水,盐和水的重量比是1:2,盐是盐水重量的( )。

  7、把两个边长都是5cm的正方形拼成一个长方形,这个长方形的周长是( )㎝,面积是( )cm2。
第4个回答  2012-05-19
卡卡卡就没看到聚财戒子ccc追问

现在的人真是越来越懒了,回答都那么简洁╮(╯▽╰)╭

相似回答