一、方式不同:
1、主成分分析:
通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。
2、因子分析:
通过从变量群中提取共性因子,因子分析可在许多变量中找出隐藏的具有代表性的因子。
3、对应分析:
通过分析由定性变量构成的交互汇总表来揭示变量。
二、作用体现不同:
1、主成分分析:
主成分分析作为基础的数学分析方法,其实际应用十分广泛,比如人口统计学、数量地理学、分子动力学模拟、数学建模、数理分析等学科中均有应用。
2、因子分析:
因子分析在市场调研中有着广泛的应用,主要包括消费者习惯和态度研究、品牌形象和特性研究、服务质量调查、个性测试。
3、对应分析:
能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,是一种直观、简单、方便的多元统计方法。
扩展资料
主成分分析对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。
对应分析是由法国人Benzenci于1970年提出的,起初在法国和日本最为流行,然后引入到美国。对应分析法是在R型和Q型因子分析的基础上发展起来的一种多元统计分析方法,因此对应分析又称为R-Q型因子分析。
在因子分析中,如果研究的对象是样品,则需采用Q型因子分析;如果研究的对象是变量,则需采用R型因子分析。但是,这两种分析方法往往是相互对立的,必须分别对样品和变量进行处理。
试述主成分分析,因子分析和对应分析三者之间的区别与联系
一、方式不同:1、主成分分析:通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。2、因子分析:通过从变量群中提取共性因子,因子分析可在许多变量中找出隐藏的具有代表性的因子。3、对应分析:通过分析由定性变量构成的交互汇总表来揭示变量。二、作用体现...
因子分析法和主成分分析法的区别与联系是什么?
区别:在主成分分析中,最终确定的新变量是原始变量的线性组合,因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系。1.因子分析法通过正交变换,将一组可能具有相关性的变量转换为一组线性不相关的变量,称为主成分。它主要用于市场研究领域。在市场研究中,研究人员关注一些研究指标...
主成分分析和因子分析有何区别?
因子分析在主成分基础上,多出一项旋转功能,该旋转目的即在于命名,更容易解释因子的含义。如果研究关注于指标与分析项的对应关系上,或是希望将得到的指标进行命名,SPSSAU建议使用因子分析。主成分分析目的在于信息浓缩(但不太关注主成分与分析项对应关系),权重计算,以及综合得分计算。如希望进行排名比较...
因子分析法和主成分分析法的区别与联系
一、方式不同:1、因子分析法:通过从变量群中提取共性因子 2、主成分分析法:通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。二、应用不同:1、因子分析法:主要应用于市场调研领域,在市场调研中,研究人员关心的是一些研究指标的集成或者组合,这些概...
主成分分析和因子分析有什么区别
一、性质不同 1、主成分分析法性质:通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量。2、因子分析法性质:研究从变量群中提取共性因子的统计技术。二、应用不同 1、主成分分析法应用:比如人口统计学、数量地理学、分子动力学模拟、数学建模、数理分析等学科中均...
聚类分析、判别分析、主成分分析、因子分析
主成分分析与因子分析的区别 1. 目的不同: 因子分析把诸多变量看成由对每一个变量都有作用的一些公共因子和仅对某一个变量有作用的特殊因子线性组合而成,因此就是要从数据中控查出对变量起解释作用的公共因子和特殊因子以及其组合系数;主成分分析只是从空间生成的角度寻找能解释诸多变量变异的绝大部分...
主成分分析,聚类分析,因子分析的基本思想以及他们各自的优缺点。
1. 目的不同:因子分析旨在发现影响多个变量的共同因子,而主成分分析旨在找到能够解释数据变异的新变量。2. 线性表示方向不同:因子分析将变量表示为公共因子的线性组合,主成分分析则将主成分表示为变量的线性组合。3. 假设条件不同:因子分析基于变量间相关性的假设,主成分分析则没有这样的假设。4. ...
主成分分析和因子分析有什么不同:
主成分分析与因子分析虽同为简化数据结构的统计方法,但在理论基础、应用目标及数学处理上有显著差异。主成分分析(PCA)聚焦于原始变量间的线性组合,通过变换,旨在减少数据维度,同时保留最大信息量。其核心思想是通过计算原始变量的协方差矩阵,找到一组新的变量(主成分),这些变量之间相互独立且方差最...
主成份分析和因子分析的区别
公共因子比主成分更容易被解释; 因子分析的评价结果没有主成分分析准确; 因子分析比主成分分析的计算工作量大 主成分分析仅仅是变量变换,而因子分析需要构造因子模型。主成分分析:原始变量的线性组合表示新的综合变量,即主成分;因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。
主成分分析法和因子分析法哪个用起来简单?
两个方法基本相同,只是因子分析是在主成分基础上,多出一步旋转步骤,为了让提取的成分更容易命名。两种方法都可以在网页版spssau中使用,配合智能文字建议和帮助手册可以能快理解。如果说研究目的完全在于信息浓缩,并且找出因子与分析项对应关系,建议用因子分析。主成分分析更多用于权重计算,以及综合得分...