xy'-y=√2x-x^2, y(1)=0

1.微分方程xy'-y-√y^2-x^2=0的通解为?2.设y=arctan(e^x)-ln√(e^2x)/(e^2x+1),求y'|x=1时的值.

第1个回答  2019-12-29
xy'-y-√(y^2-x^2)=0
(xy'-y)/x^2=√(y^2-x^2)/x^2
d(y/x)=√[(y/x)^2-1]dx/x
secu=y/x
dsecu/tanu=dln|x|
secudu=dln|x|
dln|secu+tanu|=dln|x|
secu+tanu=Cx
通解y/x+√((y/x)^2-1)=Cx
2
y'=e^x/(1+e^2x) -2e^2x/(1+e^2x)^2 *(1/2√(e^2x/(e^2x+1)))*(1/√(e^2x/(1+e^2x)))
=e^x/(1+e^2x)-e^2x/(1+e^2x) *1/(e^2x/(1+e^2x))
=e^x/(1+e^2x)-1

xy'-y=√2x-x^2, y(1)=0
xy'-y-√(y^2-x^2)=0 (xy'-y)\/x^2=√(y^2-x^2)\/x^2 d(y\/x)=√[(y\/x)^2-1]dx\/x secu=y\/x dsecu\/tanu=dln|x| secudu=dln|x| dln|secu+tanu|=dln|x| secu+tanu=Cx 通解y\/x+√((y\/x)^2-1)=Cx 2 y'=e^x\/(1+e^2x) -2e^2x\/(1+e^2x)^2 *(1\/2...

xy的导数-y-根号y平方减x平方
即(xy'-y)\/x^2=√(y\/x)^2-1 那么(y\/x)'=√(y\/x)^2-1 令y\/x=u 得到u'=√(u^2-1)du\/√(u^2-1)=dx 积分得到 ln|1+√(u^2-1)|=x +C 于是√(u^2-1)=e^(x+C)-1 展开即u^2=e^(2x+2C)-2e^(x+C)+2,令e^C=C',所以y\/x=C'^2e^2x -2C'e^x+2...

一阶线性微分方程xy'-y-√x²+y²=0求通解
(x^2+y^2)dx-xydy=0 dy\/dx=(x²+y²)\/(xy)dy\/dx=((x\/y)²+1)\/(x\/y)令u=y\/x 则dy=du*x+dx*u dy\/dx=(du\/dx)*x+u 代入得 (du\/dx)*x+u=(u²+1)\/u=u+1\/u du\/dx=1\/(xu)u*du=dx\/x 两边积分得 (1\/2)u²=lnx+C 将u=y\/x...

若实数xy满足根号2x-1+2括号y-1括号平方=0则x+y的值等于
根号(2x-1)+2(y-1)平方=0 则 2x-1=0,x=1\/2 y-1=0,y=1 x+y=3\/2

微分方程xy''=y'-x(y')^2的通解为 y''+2y'=0求解,给出步骤
y'-2y=0,特征方程为r-2=0,得r=2,通解为y=ce^(2x)y'-2y=x,r=2 ,设特解为y*=ax+b,则a-2ax-2b=x,得:a-2b=0,-2a=1,得a=-1\/2,b=-1\/4 故通解为y=ce^(2x)-(1\/2)x-1\/4 y"+y=0,特征方程r²+1=0,得r=i,-i,通解为y=c1cosx+c2sinx y"+y=x,设特解...

求微分方程xy'-y=y^2满足初始条件y(1)=1的解
满足初始条件y(1)=1的特解 解:y'-(2y\/x)=1\/2;先求y'-2y\/x=0的通解:分离变量得dy\/y=(2\/x)dx;积分之得lny=2lnx+lnc₁=ln(c₁x²)故得y=c₁x²;将c₁换成x的函数u,得y=ux²...① 对①取导数得:y'=u'x²+2ux......

求解常微分方程xy'-y=2(x^2)*y(y^2-x^2)
2xy'-y=2(x^2)*y(y^2-x^2) =2x^2y^3-2x^4y 同除以x^2 (xy'-y)\/x^2=2(y^3-yx^2)(y\/x)'=2x^3[(y\/x)^3-y\/x]设y\/x=u u'=2(u^3-u)x^3 1\/(u^3-u) du=2x^3dx...1 左边:1\/[(u-1)(u+1)u]=1\/u *[1\/(u-1)-(1\/(u+1)]\/2 =[1\/[u(u-...

求微分微分方程通解 xy'—y—(x^2十y^2)^0.5=0
解:∵xy"=y'-xy'^2 ==>xdy'\/dx=y'-xy'^2 ==>y'dx-xdy'-xy'^2dx=0 ==>(y'dx-xdy')\/y^2-xdx=0 ==>∫(y'dx-xdy')\/y^2-∫xdx=0 (积分)==>x\/y'-x^2\/2=C1\/2 (C1是常数)==>y'=2x\/(x^2+C1)∴y=∫2xdx\/(x^2+C1)=∫d(x^2+C1)\/(x^2+C1)=ln...

请问当x,y都趋向0时,xy\/√(x^2+y^2)的极限是多少?
如果x=y,极限=1\/sqrt(2)

求解常微分方程 xy(y-xy')=x+yy',y(0)=(1\/2)*根号2
方程两边同时除以xy后,用分离变量法

相似回答
大家正在搜