初一下册数学考试大型应用题训练

就是数学考试最后分成几个小题的那种10几分的应用题,多一点。初一下册哦

一元一次方程应用题归类汇集
一、行程问题
(一)追击和相遇问题
1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,甲地到乙地的距离是多少千米?

2、某人从家里骑自行车到学校。若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?

3、在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,多少分钟后俩人相遇?

4、5.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?

(二)时钟问题
1、在8点和9点间,何时时钟分针和时针重合?何时时钟分针和时针成直角?何时时钟分针和时针成平角?

(三)行船问题
1、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?

2、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离?

二、工程问题
1、一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,则乙共需要几天完成?

2、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?

3、已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?

4、整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作?

三、比赛积分问题
1、某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了几道题?

2、某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?

3、小明在一次篮球比赛中,共投中15个球(其中包括2分球和3分球),共得34分,则小明共投中2分球和3分球各多少个?

四、年龄问题
1、甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是多少岁?

2小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄。

五、比例问题
1、某洗衣机厂生产三种型号的洗衣机共1500台,已知A、B、C三种型号的洗衣机的数量比是2:3:5,则三种型号的洗衣机各生产多少台?

2、工厂有工人共28人,已知1人一天能生产螺钉12个或螺母18个,如何分配才能使一天生产的产品刚好配套?(1个螺钉陪2个螺母)

六、分配问题
1、小明看书若干日,若每日读书32页,尚余31页;若每日读书36页,则最后一天需要读39页,才能读完。这本书共多少页?

2、甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下的人数是原乙队人数的一半还多15人,求甲、乙两队原有人数各多少人?

3、甲、乙两车间各有工人若干,如果从乙车间调100人去甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人去乙车间,则两车间的人数相等。求原来甲、乙车间各有多少人?

七、数字问题
1、一个三位数,各位数字是百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位对调,所得的新数比原数的2倍少49,求原数。

八、几何问题
1、一个长方形的周长为26㎝,这个长方形的长减少1㎝,宽增加2㎝,就可成为一个正方形,则原长方形的长和宽各为多厘米?

2、在一个底面直径为30厘米,高为8厘米的圆锥体容器中倒满水,然后将水倒入一个底面直径为10厘米的圆柱体空容器内,圆柱体容器内的水有多高?

九、利润与利润率问题
1、一家服装店将某种服装成本提高40%后标价,又以八折优惠卖出,结果每件仍可获利15元,这种服装每件的成本是多少元?

2、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?

3、某商店在同一时间内以每件60元的价格卖出2件衣服,其中一件盈利25%,另一件亏损25%,则卖这2件衣服是盈利还是亏损了,还是不盈不亏?

十、方案问题
1、已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费。某游客乘出租车从客运中心到三星堆,付了车费10.4元,试估算从客运中心到三星堆大约有多少公里?

2、某通讯公司推出了甲、乙两种市内移动通讯业务。甲种使用者需每月缴纳15元月租费,然后每通话1分钟,再付花费0.3元;乙种使用者不缴纳月租费,每通话1分钟,付花费0.6元。根据一个月的通话时间,选择哪种方式更优惠?

3、有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果有40㎡墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面。每名师傅比徒弟一天多刷30㎡的墙面。求每个房间需要粉刷的墙面面积是多少平方米?追问

呃,这是初一下册的么

追答

是的。可能地区不一样吧。。我们这里是五四制。呵呵。你可以去新华书店买《AB卷》或《精华训练》很好的。

温馨提示:内容为网友见解,仅供参考
第1个回答  2012-05-23
2001----2002年初一第二学期期末考试题 (下册)

一、 填空
1、 -1/3x-x2y+2n是___次____项式,第二项的系数是_______,第三项的次数是_______。
2、 如图,两个矩形的一部分重叠在一起,重叠部分是边长为2的正方形,阴影部分的面积是_____________。
c

d

b
a
3、 任意掷两枚硬币,至少有一次正面朝上的概率是_______________。
4、 如图,如果∠1+∠2=280°,则∠1=_______,∠2=________,∠3=______。
5、 中国第五次人口普查资料表明,我国的人口总数为1295330000人,精确到百万位是________(用科学计数法表示),有效数字是_____________。
6、 如图,(1)若∠1+∠2=180°°,∠1=∠3,找出图中平行的直线,并说明理由___________________________,______________________________。
(2)若e∥m,b∥c,找出图中角之间的关系,并说明理由_________________,___________________________-。
b a e
c 1 m
3 4
2

7、 小明有两根长度为4厘米,9厘米的木棒,要选择第三根木棒作成三角形,则第三根木棒应在____________________范围内取值。
8、 按下面蕴含的内在规律,在横线上填上适当的图形:
9、 如图,、镜子里号码如图则实际纸上的号码是_________________。

801

10、等腰三角形一个底角为40°,则此等腰三角形顶角为____________。
二、 选择
1、将2.4695精确到千分位是( )
A、2.469 B、2.460 C、2.47 D.2.470
2、如果三角形顶一个内角等于另外两个内角之和,那么这个三角形是( )
A、锐角三角形 B、直角三角形 C、钝角三角形 D、以上都有可能
3、下列哪一组数能构成勾股数 ( )
A、3,4,7 B、2,4,5 C、5,12,13 D、6,8,12
4、正方形是轴对称图形,对称轴有( )条。
A、2 B、3 C、4 D、5
5、下列计算正确的是( )
A、a3×a2=a6 B、(3ab2)2=6a2b4 C、y5÷y5=1 D、y5+y5=2y10
6、一根蜡烛长20厘米,点燃后每小时燃烧5厘米,,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的关系图象表示为( )
A.
20 h(厘米) 20 h(厘米) 20 h(厘米) 20 h(厘米)

0 4 t(时)0 4 t(时) 0 4 t(时) 0 4 t(时)
7、如图的两个三角形中,∠1=∠2,AB=DE,若使△ABC≌△EDF,则满足的另一个条件是( )
A D

C
B E F
A、∠B=∠F B、BC=EF C、∠B=∠D D、AC=DF
三、 计算
1、[(3a+b)2-b2]÷a 2、105÷10-1×100
3、(2/5mn3-m2n2+1/6n4)÷(2/3n2) 4、1007×993
5、(2x-5)(2x+5)-(2x+1)(2x-3)
四、 设计两个转盘,做“配紫色”游戏,使获胜者的概率为1/3,并用树状图表示。
五、 如图,一根旗杆在离地面9米处断裂,旗杆顶部在离旗杆底部12米处,旗杆折断之前有多高?
六、 小明做了一个如图所示的风筝,其中∠EDH=∠FDH,ED=FD,小明不用测量就知道EH=FH,这是为什么?说明理由。

D

E F

H

七、 小丽与小明在讨论问题:
小丽:如果你把7498近似到4位数,你就会得到7000。
小明:不,我有另外一种解答方法,可以得到不同的答案,首先,将7498近似到百位,得到7500,接着再把7500近似到千位,就得到8000。
你怎样评价小丽和小明的说法呢?本回答被网友采纳
第2个回答  2012-05-23
找老师,要点题做,多得很,又贴近考试。
第3个回答  2012-05-23
新华书店买一本吧追问

有卖吗,书名大概是什么

第4个回答  2012-05-23
一、某水产品市场管理部门规划建造面积为2400平方米的大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28平方米,月租费为400元,每间B种类型的店面的平均面积为20平方米,,月租费为360元,全部店面的建造面积不低于大棚总面积的85%。
(1)试确定A种类型店面的数量? (2)该大棚管理部门通过了解,A种类型店面的出租率为75%,B种类型店面的出租率为90%,为使店面的月租费最高,应建造A种类型的店面多少间?
解:设A种类型店面为a间,B种为80-a间
根据题意
28a+20(80-a)≥2400×85%
28a+1600-20a≥2040
8a≥440
a≥55
A型店面至少55间
设月租费为y元
y=75%a×400+90%(80-a)×360
=300a+25920-324a
=25920-24a
很明显,a≥55,所以当a=55时,可以获得最大月租费为25920-24x55=24600元
二、水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到情况:
1、每亩地水面组建为500元,。
2、每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;
3、每公斤蟹苗的价格为75元,其饲养费用为525元,当年可或1400元收益;
4、每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;
问题:
1、水产养殖的成本包括水面年租金,苗种费用和饲养费用,求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);
2、李大爷现有资金25000元,他准备再向银行贷款不超过25000元,用于蟹虾混合养殖,已知银行贷款的年利率为10%,试问李大爷应租多少亩水面,并向银行贷款多少元,可使年利润达到36600元?
解:1、水面年租金=500元
苗种费用=75x4+15x20=300+300=600元
饲养费=525x4+85x20=2100+1700=3800元
成本=500+600+3800=4900元
收益1400x4+160x20=5600+3200=8800元
利润(每亩的年利润)=8800-4900=3900元
2、设租a亩水面,贷款为4900a-25000元
那么收益为8800a
成本=4900a≤25000+25000
4900a≤50000
a≤50000/4900≈10.20亩
利润=3900a-(4900a-25000)×10%
3900a-(4900a-25000)×10%=36600
3900a-490a+2500=36600
3410a=34100
所以a=10亩
贷款(4900x10-25000)=49000-25000=24000元
三、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?
解:设还需要B型车a辆,由题意得
20×5+15a≥300
15a≥200
a≥40/3
解得a≥13又1/3 .
由于a是车的数量,应为正整数,所以x的最小值为14.
答:至少需要14台B型车.

四、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时?
解:设甲场应至少处理垃圾a小时
550a+(700-55a)÷45×495≤7370
550a+(700-55a)×11≤7370
550a+7700-605a≤7370
330≤55a
a≥6
甲场应至少处理垃圾6小时
五、学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处可住;若每个房间住8人,则空出一间房,并且还有一间房也不满。有多少间宿舍,多少名女生?
解:设有宿舍a间,则女生人数为5a+5人
根据题意
a>0(1)
0<5a+5<35(2)
0<5a+5-[8(a-2)]<8(3)
由(2)得
-5<5a<30
-1<a<6
由(3)
0<5a+5-8a+16<8
-21<-3a<-13
13/3<a<7
由此我们确定a的取值范围
4又1/3<a<6
a为正整数,所以a=5
那么就是有5间宿舍,女生有5×5+5=30人
六、某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%。
(1)求调整后这款彩屏手机的新单价是每部多少元?让利后的实际销售价是每部多少元?
解:手机原来的售价=2000元/部
每部手机的成本=2000×60%=1200元
设每部手机的新单价为a元
a×80%-1200=a×80%×20%
0.8a-1200=0.16a
0.64a=1200
a=1875元
让利后的实际销售价是每部1875×80%=1500元
(2)为使今年按新单价让利销售的利润不低于20万元,今年至少应销售这款彩屏手机多少部?
20万元=200000元
设至少销售b部
利润=1500×20%=300元
根据题意
300b≥200000
b≥2000/3≈667部
至少生产这种手机667部。
七、我市某村计划建造A,B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号的沼气池的占地面积,使用农户数以及造价如下表:
型号 占地面积(平方米/个) 使用农户数(户/个) 造价(万元/个)
A 15 18 2
B 20 30 3

已知可供建造的沼气池占地面积不超过365平方米,该村共有492户.
(1).满足条件的方法有几种?写出解答过程.
(2).通过计算判断哪种建造方案最省钱?
解: (1) 设建造A型沼气池 x 个,则建造B 型沼气池(20-x )个
18x+30(20-x) ≥492
18x+600-30x≥492
12x≤108
x≤9
15x+20(20-x)≤365
15x+400-20x≤365
5x≥35
x≤7
解得:7≤ x ≤ 9
∵ x为整数 ∴ x = 7,8 ,9 ,∴满足条件的方案有三种.
(2)设建造A型沼气池 x 个时,总费用为y万元,则:
y = 2x + 3( 20-x) = -x+ 60
∵-1< 0,∴y 随x 增大而减小,
当x=9 时,y的值最小,此时y= 51( 万元 )
∴此时方案为:建造A型沼气池9个,建造B型沼气池11个
解法②:由(1)知共有三种方案,其费用分别为:
方案一: 建造A型沼气池7个, 建造B型沼气池13个,
总费用为:7×2 + 13×3 = 53( 万元 )
方案二: 建造A型沼气池8个, 建造B型沼气池12个,
总费用为:8×2 + 12×3 = 52( 万元 )
方案三: 建造A型沼气池9个, 建造B型沼气池11个,
总费用为:9×2 + 11×3 = 51( 万元 )
∴方案三最省钱.
八、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少个?
解:设学生有a人
根据题意
3a+8-5(a-1)<3(1)
3a+8-5(a-1)>0(2)
由(1)
3a+8-5a+5<3
2a>10
a>5
由(2)
3a+8-5a+5>0
2a<13
a<6.5
那么a的取值范围为5<a<6.5
那么a=6
有6个学生,书有3×6+8=26本
附:解答应用题的一点心得:
1、读懂题意,把不相关的语言精简掉,现在应用题考得不是数学,而是语文的阅读能力,还要有转化问题的能力。
2、巧设未知数。一道应用题中可以把几个量都设为未知数,但是哪一个更为简便,要仔细斟酌。例如:甲乙二人速度之比为3:2,在求甲乙的速度时,我们可以设甲的速度为a千米/小时,乙为b千米/小时,这就是二元一次方程组;或者设甲的速度为a千米/小时,则乙为2/3a千米/小时,这样虽然是一元一次方程,但是有分数;或者设甲的速度为3a千米/小时,乙的速度为2a千米/小时
可见最后的设法最好。根据不同的题目设出未知数。
3、根据等量关系列出方程
4、解方程。此时我们可能会遇到二个未知数,而只能列出一个方程,我们就要看看是不是还有隐含条件,比如人数、物体的个数,都要是正整数,这就是隐含条件,尤其在不等式方程中要用到。还有就是分式方程要验根
5、写清单位和答话。这一步往往被忽视,其实这一步恰恰反映出你是否读懂了题目,是否知道题目要求的是什么,在考试中是要站分数的。
6、勤加练习,熟能生巧。触类旁通,举一反三。
这是我个人对接应用题的一点心得,希望对你有所帮助。一点心得

参考资料:团队,我最爱数学

初一下册人数学应用题多点~谢谢啦~
所以甲乙距离40×21\/4=210千米 3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的 一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人 那么根据题意 2a-16=1\/2×(a+16)-3 4a-32=a+16-6 ...

求初一下难度较大的数学题目【应用题】【附答案】
3、五一期间,班主任老师带领全班同学去距学校25KM的市科技管参观,男生骑自行车在班长的带领下提前1H20分钟出发,女生在王老师的带领下随后乘客车前往,结果2队同时到达,若客车的速度是自行车的3倍,求各队的速度。解:设自行车速度为X千米\/时,那么客车的速度为3X千米\/时 根据题意得:25\/x - 25\/...

初一下册数学考试大型应用题训练
1、某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了几道题?2、某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他...

求初一下难度较大的数学题目【应用题】【附答案】
有两个长方形,第一个长方形的长与宽的比为5:4,第二个长方形的长与宽的比为3:2;第一个长方形的周长比第二个长方形的周长大112cm,第一个长方形的宽比第二个长方形的长的2倍还大6cm.求这两个长方形的面积。解:设第一个长方形的长和宽分别为5x,4x,第二个长方形的长和宽分别为5y,2...

初一数学应用题题目60道,要有答案和过程!!!急急急
乙每小时行x千米 3(45+x)+17=272 3(45+x)=255 45+x=85 x=40 乙每小时行40千米 5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分? 平均成绩是x分 40*87.1+42x=85*82 3484+42x=6970 42x=3486 x=83 平均成绩是83...

初一数学应用题大全(不要回答)
1、三个连续奇数的和是15,它们的积为多少?2、计算:34.59.23—34.5+1.7734.5 3、如图一所示,平行四边形面积是20平方厘米,请你计算下面图形阴影部分的面积.(单位:CM)4、为了欢迎国庆,工人们在天俯广场升起了100个气球.小明数完后说:“依次看,每4个中有3个红色的.”小华说:“依次看...

求初一下数学考试典型应用题及答案!!!
(2) ①设冰箱采购x台,则彩电采购(40-x)台,根据题意,得 2320x+1 900(40-x)≤85000,x≥ (40-x).解不等式组,得 ≤x≤ ∵x为正整数.∴x= 19,20,21.∴该商场共有3种进货方案:方案一:冰箱购买19台,彩电购买21台 方案二:冰箱购买20台,彩电购买20台;方案三:冰箱购买21台...

初一下册数学应用题
1 .某船的载重为 260 吨,容积为 1000 立方米 .现有甲、乙两种货物要运,其中甲种货物每 吨体积为 8 立方米,乙种货物每吨体积为 2 立方米,若要充分利用这艘船的载重与容积,甲、乙两种货物应各装多少吨(设装运货物时无任何空隙)?2 .第一小组的同学分铅笔若干枝 .若其中有 4 人每人各...

求哈尔滨数学初一下册较难的应用题(24-28题的类型) 多一些 给分_百度...
1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?2.一家商店要进行装修,若请甲、乙两个装修组同时施工,...

帮忙解决几个初一的数学应用题(题目很长)
解得:X=100 原计划承做的件数为:40X=40*100=4000 答:原计划规定100天完成,原计划承做4000件。2,,,解:设运X吨 A基地总运费:20×(240-X)+25×(X-40)=5X+3800 B基地总运费:15×X+18×(300-X)=-3X+5400 两地调运蔬菜运费相等时:5X+3800=-3X+5400 8X=1600 X=200 ∴当X=200...

相似回答