数学向量的所有公式

如题所述

设a=(x,y),b=(x',y').

1、向量的加法

向量加法的运算律:

交换律:a+b=b+a。

结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0。

AB-AC=CB.即“共同起点,指向被减”。

a=(x,y) b=(x',y') 则 a-b=(x-x',y-y')。

4、数乘向量

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa。

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb。

相关概念

几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。

因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。

温馨提示:内容为网友见解,仅供参考
第1个回答  2021-09-02

1、向量参数方程式

向量参数方程式是高中数学学科中一个方程式,表达式为:OP=(1-t)OA+tOB。

2、向量加减:

A(X1,Y1) B(X2,Y2),则A + B=(X1+X2,Y1+Y2),A - B=(X1-X2,Y1-Y2)。

3、数乘向量:

结合律:λ(μa) = (λμ)a;

第一分配律:(λ+μ)a=λa+μa;

第二分配律:λ(a+b)=λa+λb。

发展历史

向量,最初被应用于物理学。很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到。

“向量”一词来自力学、解析几何中的有向线段。最先使用有向线段表示向量的是英国大科学家牛顿

以上内容参考:百度百科-向量

以上内容参考:百度百科-数乘向量

以上内容参考:百度百科-向量加减

以上内容参考:百度百科-向量参数方程式

本回答被网友采纳
第2个回答  2019-12-02
向量加法与减法的几何表示:平行四边形法则、三角形法则。
向量加法有如下规律:

=

(交换律);
+(
+c)=(
+
)+c
(结合律);
+0=
+(-
)=0.
1.实数与向量的积:实数
与向量
的积是一个向量。
(1)|
|=|
|•|
|;
(2)

>0时,

的方向相同;当
<0时,

的方向相反;当
=0时,
=0.
(3)若
=(
),则

=(
).
两个向量共线的充要条件:
(1)
向量b与非零向量
共线的充要条件是有且仅有一个实数
,使得b=

(2)

=(
),b=(
)则
‖b

平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量
,有且只有一对实数

,使得
=
e1+
e2.
2.P分有向线段
所成的比:
设P1、P2是直线
上两个点,点P是
上不同于P1、P2的任意一点,则存在一个实数
使
=

叫做点P分有向线段
所成的比。
当点P在线段
上时,
>0;当点P在线段

的延长线上时,
<0;
分点坐标公式:
3.
向量的数量积:
(1).向量的夹角:
(2).两个向量的数量积:
(3).向量的数量积的性质:
(4)
.向量的数量积的运算律:
4.主要思想与方法:
本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。

数学中向量的许多公式,运算规则
定比分点公式(向量P1P=λ•向量PP2)设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比.若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式)x=(...

数学向量公式是什么?
1、单位向量:单位向量a0=向量a\/|向量a| 2、P(x,y)那么向量OP=x向量i+y向量j |向量OP|=根号(x平方+y平方)3、P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1} |向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]4、向量a={x1,x2}向量b={x2,y2} 向量a*向量b=|...

高中数学向量公式有哪些
结合律:(a+b)+c=a+(b+c).2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减”a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣...

数学向量的所有公式
向量加法的运算律:交换律:a+b=b+a。结合律:(a+b)+c=a+(b+c)。2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0。AB-AC=CB.即“共同起点,指向被减”。a=(x,y) b=(x',y') 则 a-b=(x-x',y-y')。4、数乘向量 向量对于数的分配律(...

向量的基本运算公式是什么?
向量的基本运算公式是:向量的加法OB+OA=OC。a+b=(x+x',y+y')。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。向量的减法:如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0。个向量相乘公式:向量a•向量b =|...

数学中的向量公式是什么?
向量只有长度和方向,没有位置,常用计算公式: 1. 向量加法 v1(x1,y1,z1) + v2(x2,y2,z2) = v(x1+x2,y1+y2,z1+z2) 2. 向量减法 v1(x1,y1,z1) - v2(x2,y2,z2) = v(x1-x2,y1-y2,z1-z2) 或者: v1(x1,y1,z1) - v2(x2...

高中数学向量知识点
y1+λy2)\/(1+λ)我们把上面的式子叫做有向线段P1P2的定比分点公式 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣*∣a∣,当λ>0时,与a同方向;当λ<0时,与a反方向。实数λ叫做向量a的系数,乘数向量的几何意义时把向量a沿着的方向或反方向放大或缩小。

高中数学必修四向量的所有公式,运算法则之类的
高中数学必修四向量的主要公式和运算法则如下:向量的加法与减法 向量加法遵循平行四边形法则或三角形法则。向量减法就是对应坐标相减。向量数量积 向量A与向量B的数量积定义为 |A|×|B|×cosθ,其中θ是A与B之间的夹角。当两向量垂直时,数量积为0。向量向量积 向量A与向量B...

高中数学必修四向量的所有公式,运算法则之类的
高中数学必修四中,向量的运算规则和公式概括如下:1. 向量加法遵循平行四边形法则和三角形法则,即 AB+BC=AC。向量的加法运算具有交换律(a+b=b+a)和结合律((a+b)+c=a+(b+c))。向量减法定义为相反向量之和等于零,如 AB-AC=CB,表示“共同起点,指向被减”。2. 数乘向量表示为λa,...

高中数学向量公式
设a=(x,y),b=(x',y').1、向量的加法向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=(x,y) b=(x',y') 则 a-b=(x-x',y-y')...

相似回答