已知Sn为数列{an}的前项和,且Sn=2an+n2-3n-2,n=1,2,3…(Ⅰ)求证:数列{an-2n}为等比数列;(Ⅱ)设

已知Sn为数列{an}的前项和,且Sn=2an+n2-3n-2,n=1,2,3…(Ⅰ)求证:数列{an-2n}为等比数列;(Ⅱ)设bn=an?(-1)n,求数{bn}的n项和Pn;(Ⅲ)设cn=1an?n,数列{cn}的n项和为Tn,求证:Tn<3744.

无其他回答

已知Sn为数列{an}的前项和,且Sn=2an+n2-3n-2,n=1,2,3…(Ⅰ)求证:数列{...
(Ⅰ)∵Sn=2an+n2-3n-2∴Sn+1=2an+1+(n+1)2-3(n+1)-2∴an+1=2an-2n+2∴an+1-2(n+1)=2(an-2n)∴{an-2n}是以2为公比的等比数列.(II)a1=S1=2a1-4,∴a1=4,∴a1-2×1=4-2=2∴an-2n=2n,∴an=2n+2n …5分当n为偶数时,Pn=b1+b2+b3+…+bn=(b...

已知Sn为数列{an}的前项和,且Sn=2an+n2-3n(n属于N*) ,)求证:数列{an...
【解】Sn=2an+n2-3n-2,则S1=2a1+1-3-2, a1=4.Sn=2an+n^2-3n S(n-1)=2a(n-1)+(n-1)^2-3(n-1)Sn-S(n-1)=2an-2a(n-1)+n^2-(n-1)^2-3n+3(n-1)即an =2an-2a(n-1)+2n-4 an=2a(n-1)-2n+4 an-2n=2a(n-1)-4n+4=2a(n-1)-4(n-1)an...

...的前n项和为Sn,且Sn=2an+n²-3n-2,n=1,2,3,……⑴求证:数列{an...
Sn=2an+n²-3n-2 (1)n=1, a1= 4 S(n-1) = 2a(n-1) +(n-1)^2-3(n-1) - 2 (2)(1)-(2)an = 2an - 2a(n-1) +2n-1 - 3 an = 2a(n-1)-2n+4 an - 2n = 2(a(n-1) - 2(n-1))(an - 2n )\/(a(n-1) - 2(n-1) ) =2 =>{an...

...为Sn,且Sn=2an-n2+3n-2(n∈N*).(1)求证:数列{an+2n}为等比数列,并...
(Ⅰ)证明:∵Sn=2an-n2+3n-2.当n≥2时,Sn-1=2an-1-(n-1)2+3(n-1)-2,∴an=2an-2an-1-2n+4,∴an+2n+2[an-1+2(n-1)],又当n=1时,a1=0,∴{an+2n}是以2为首项,2为公比的等比数列,∴an=2n?2n.(Ⅱ)解:由(Ⅰ)得Sn=2n+1-n2-n-2,bn=2?n...

已知Sn为数列{an}的前n项和,且Sn=2an+n²-3n-2,n=1,2,3,4,5...
对第一部分Fn=[(-2)^1+(-2)^2+(-2)^3+……+(-2)^n],显然是个首项为-2,公比为-2的等比数列,由等比数列前n项和公式Sn=(a1-q*an)\/(1-q),计算得:Fn=(-2+2*(-2)^n)\/1-(-2)=(-2\/3)+ (2\/3)*(-2)^n 对第二部分Dn=2*(-1+2-3+4-……),需分情况讨...

已知Sn为数列{an}的前n项和,且Sn=2an+n²-3n-2,n=1,2,3,4,5...
这里44这个数是突破口,这给出一个信息就是这题必然用放缩法,但肯定是从某一项才开始的,否则不会出现这么大的分母。下面先算前几项,发现c1=1\/3;从c2开始利用放缩法,c2=1\/6,所以Tn-c1<1\/3。(这里把后面的放缩成公比为1\/2的等比数列)。这时候得到Tn<2\/3<37\/44 ...

已知Sn为数列{an}的前n项和,且Sn=2an+n²-3n-2,n=1,2,3,4,5...
2An - 2An-1 = An+1 - An + 2 令Cn=An - An-1 得到 2Cn=Cn+1+2 特征方程 2x=x+2 解出x=2 那么 Cn+1 -2 = 2(Cn - 2)即{Cn-2}是等比数列 得到 Cn = 2^n-1 + 2 那么有 2^n + 2 = An+1 - An 2^n-1 + 2 = An - An-1 ...2 + 2 = A2 -A1...

已知数列{an}的前n项和为Sn,且Sn=2an-n(n∈N+).(1)求数列{an}的通项...
①当n≥2时,Sn-1=2an-1-(n-1) ②②-①得an=2an-1+1,∴an+1=2(an-1+1)又∵a1=2a1-1,∴a1=1∴数列{an+1}是以2为首项,2为公比的等比数列,∴an+1=2n∴an=2n-1由于a1=1也适合上式,∴an=2n-1(n∈N+)(2)∵点P(bn,bn+1)在直线x-y+2=0上,∴bn...

已知数列{an}的前n项和为Sn,满足Sn=2an-2n+1.(1)证明:数列{an2n}是等 ...
解答:证明:(1)n=1时,a1=4;n≥2时,an=Sn-Sn-1,可得an=2an-1+2n,∴an2n-an?12n?1=1,∴数列{an2n}是首项为2,公差为1的等差数列,∴an2n=n+1,∴an=(n+1)?2n;(Ⅱ)bn=an4n=(n+1)?2-n,∴Tn=2?12+3?122+…+(n+1)?12n,∴12Tn=2?122+…+n?12n+...

已知Sn为数列{an}的前n项和,且满足Sn=2an-n^2 3n 2
Sn=2an-n^2+3n+2 n=1 a1=2a1-1+3+2 a1=-4 for n>=2 an = Sn -S(n-1)=2an - 2a(n-1) - (2n-1) +3 an = 2a(n-1) + 2n-4 an + 2n = 2[a(n-1) + 2(n-1)]=>{an + 2n} 是等比数列, q=2 an + 2n =2^(n-1) .(a1 + 2)=-2^n an = -...

相似回答