如题所述
根据可逆矩阵的定义:设A是n阶矩阵,如果存在n阶矩阵B使得AB=BA=E成立,则称A是可逆矩阵。
定理:若A是n阶矩阵,且满足AB=E,则必有BA=E。
按可逆矩阵定义,若AB=BA=E,则称A是可逆矩阵,B是A的逆矩阵。由定理,AB=E可保证BA=E,因而用定义法求A逆矩阵时,我们的工作量可以减少一半,只需要检验AB=E就可以了。但是要注意定理的条件是A是n阶矩阵不能忽略。
显然,对于
我们并不能说A可逆。因为A不是n阶矩阵。