(1)证明bn是等差数列
(2)求数列an的前n项和Sn
注明:网上有答案,就是怎么也看不懂。请高手详细解答。叩谢!!
另外,n-1,n,n+1都是下标
数学红对勾11:数列an中,a1=1,an+1=2an+2^n,设bn=an\/2^n-1,
an+1=2an+2^n等式两端同时除以2^n得到 (an+1)\/2^n=an\/2^(n-1)+1 你观察等式可看出an\/2^(n-1)即为bn的等式,可看做是bn+1=(bn)+1,那么bn就是以 b1=an\/2^n-1=1为首元数,1为差值的等差数列。由bn是等差数列,可以求出bn=n,an\/2^n-1=n,an=n*2^(n-1)再利用错位...
数学红对勾例2:若数列{an}满足a1=1,且an+1=an\/(1+an),设数列{bn}的前...
1\/a(n+1) = (1+an)\/an = 1+1\/an 1\/a(n+1) -1\/an =1 1\/an -1\/a1=n-1 an = 1\/n Sn=2-bn n=1, b1= 1 bn = Sn -S(n-1)=-bn+b(n-1)bn = (1\/2)b(n-1)= (1\/2)^(n-1) .b1 =(1\/2)^(n-1)let S=1.(1\/2)^0+2.(1\/2)^1+...+n.(1\/2...
数学红对勾9:已知数列{an}满足a1=1\/2,an=an-1+1\/(n^2-1) (n≧2),则...
a2=a1+1\/2(1\/1-1\/2)上面(n-1)式相加得 an=a1+1\/2(1\/(n-1)-1\/(n+1) +1\/(n-2)-1\/n +...+1\/2-1\/3+1\/1-1\/2)=1\/2+1\/2(1-1\/(n+1))=1-1\/2*1\/(n+1)
关于高一数学红对勾的题目
则2A(n+1)-An=1 2[A(n+1)-1]=An-1 An-1=(Ao-1)*(1\/2)~n Ao=1\/2 则An=1-(1\/2)~(n+1)
数学红对勾12:定义运算符号Ⅱ,这个符号表示若干个数相乘,例如可将1×...
T4=a1a2a3a4=1*3*5*7=105 2.an=Tn\/T(n-1)=n^2\/(n-1)^2 (n>=2)a1=T1=1 所以,an=n^2\/(n-1)^2(n>=2)1 (n=1)
数学红对勾1:数列{an}的前n项和为Sn=3^n+a(a为常数),则数列{an}()
a1=S1=3+a a2=S2-S1=3²+a-3-a=6 a3=S3-S2=27-9=18 等比则a2²=a1a3 所以a=-1 选B