函数f(x)=2cosx^2+2根号3sinxcosx求函数fx在区间(-pai\/6 pai\/3)上...
解:(1)f(x)=2cos^2x+2根号3sinxcosx =cos2x+1+根号3sin2x =2sin(2x+π\/6)+1 又因为x∈(-π\/6,π\/3)2x+π\/6∈(-π\/3,5π\/6)所以f(x)∈(0,3)(2)f(a+b)=2sin(2(a+b)π\/6)+1=2 sin(2(a+b)+π\/6)=1\/2 所以2(a+b)+π\/6=5π\/6 所以a+b=π\/3 所以...
已知函数f(x)=2sinxcosx+根号3cos2x,求函数f(x)的单调减区间
函数可化简为:f(x)=2*sin(2x+pai\/3)然后为:-pai\/2+2kpai小于等于2x+pai\/3小于等于pai\/2+2kpai最后答案为:[-pai\/12+kpai,pai\/12+kpai]
f (x)=2cosx\/2(sinx\/2+cosx\/2)的单调增区间
解答 f (x)=2sinx\/2cosx\/2+2cos²x\/2 =sinx+cosx-1 =√2(√2\/2sinx+√2\/2cosx)-1 =√2sin(x+π\/4)-1 2kπ-π\/2≤x+π\/4≤2kπ+π\/2 2kπ-3π\/4≤x≤2kπ+π\/4 增区间[2kπ-3π\/4,2kπ+π\/4].
求函数f(x)=2cos²x\/2-√3sinx的最小正周期和值域
首先利用二倍角公式:cos2x=2cos'x-1<'代表平方>和归一公视将f(x)化成f(x)=2cos(x-#\/3)+1;其次由y=cosx的值域属于[-1,1].所以f(x)的值域为[-1,3];最后由T=2#\/w=2 <#代表pai即3.1415926>
f(x)=2cosxsin(x+pai\/3)-(根号3)\/2,求最小正周期?
f(x)=2cosxsin(x+pai/3)-(根号3)/2 =2cosxsin(x+兀\/3)-√3\/2 =2cosx(sinxcos兀\/3+cosxsix兀\/3)-√3\/2 =2cosx(1\/2sinx+√3\/2cosx)-√3\/2 =sinxcosx+√3cos^2x-√3\/2 =1\/2sin2x+√3\/2(2cos^2x-1)=1\/2sin2x+√3\/2cos2x =cos兀\/3sin2x+sin兀\/3cos2...
已知函数f(x)=2cos^2x\/2-根号3sinx (1)求函数f(x)的最小正周期和值域...
(1)f(x)=-根号3sinx+cosx+1 =2sin(x+5π\/6)+1 T=2π\/1=2π 值域[-1,3](2)f(a-π\/3)=2sin(a+π\/2)+1=2cosa+1=1\/3 cosa=-1\/3 cos2a=2cos^2a-1=-7\/9 tana=-2根号2 cos2a\/1-tana=(1-2根号2)\/9
求大神!已知函数向量a=(2cosx,√3sinx),向量b=(cosx,2cosx)...
f(x)=2(cosx)^2+2根号3sinxcosx=cos2x+1+根号3sin2x=2sin(2x+Pai\/6)+1 单调增区间是:-Pai\/2+2kPai<=2x+Pai\/6<=pai\/2+2kPai 即是:[kPai-Pai\/3,kPai+Pai\/6](2)0<=x<=Pai\/4 Pai\/6<=2x+Pai\/6<=2Pai\/3 1\/2<=sin(2x+Pai\/6)<=1 所以,当x=0时,f(x)有最小...
f(x)=sin^2x+根号3sinxcosx在[-π\/3,m]
f(x)=sin∧2x+√3sinxcosx =-1\/2cos2x+√3\/2sin2x-1\/2
已知函数f(x)=2sinxcos(π\/2-x)-√3sin(π+x)cosx+sin(π\/2+x)cosx...
=√3\/2*sin2x-1\/2cos2x+1\/2+1 =√3\/2*sin2x-1\/2cos2x+3\/2 =sin2xcosπ\/6-cos2xsinπ\/6+3\/2 =sin(2x-π\/6)+3\/2 T=2π\/2=π -1<=sin(2x-π\/6)<=1 1\/2<=sin(2x-π\/6)+3\/2<=5\/2 函数f(x)的最小值为:1\/2 函数f(x)的最大值为:5\/2 ...