三角形重心是三角形三条中线的交点。当几何体为匀质物体时,重心与形心重合。三角形的外心是三角形三条垂直平分线的交点(或三角形外接圆的圆心) 。
重心定义:三角形重心是三角形三条中线的交点。当几何体为匀质物体时,重心与形心重合。
性质证明:
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
例:已知:△ABC,E、F是AB,AC的中点。EC、FB交于G。
求证:EG=1/2CG
证明:过E作EH∥BF交AC于H。
∵AE=BE,EH//BF
∴AH=HF=1/2AF(平行线分线段成比例定理)
又∵ AF=CF
∴HF=1/2CF
∴HF:CF=1/2
∵EH∥BF
∴EG:CG=HF:CF=1/2
∴EG=1/2CG
2、重心和三角形3个顶点组成的3个三角形面积相等。
证明方法:
在△ABC内,三边为a,b,c,点O是该三角形的重心,AOA'、BOB'、COC'分别为a、b、c边上的中线。根据重心性质知:
OA'=1/3AA'
OB'=1/3BB'
OC'=1/3CC'
过O,A分别作a边上高OH',AH
可知OH'=1/3AH
则,S△BOC=1/2×OH'a=1/2×1/3AHa=1/3S△ABC
同理可证S△AOC=1/3S△ABC
S△AOB=1/3S△ABC
所以,S△BOC=S△AOC=S△AOB
3、重心到三角形3个顶点距离平方的和最小。 (等边三角形)
证法一:
设三角形三个顶点为(x1,y1),(x2,y2),(x3,y3) 平面上任意一点为(x0,y0) 则该点到三顶点距离平方和为:
(x1-x0)2+(y1-y0)2+(x2-x0)2+(y2-y0)2+(x3-x0)2+(y3-y0)2
=3x02-2x0(x1+x2+x3)+3y02-20y(y1+y2+y3)+x12+x22+x32+y12+y22+y32
=3[x0-1/3*(x1+x2+x3)]2+3[y0-1/3*(y1+y2+y3)]2+x12+x22+x32+y12+y22+y32-1/3(x1+x2+x3)2-1/3(y1+y2+y3)2
显然当x=(x1+x2+x3)/3,y=(y1+y2+y3)/3(重心坐标)时
上式取得最小值x12+x22+x32+y12+y22+y32-1/3(x1+x2+x3)2-1/3(y1+y2+y3)2
最终得出结论。
证法二:由性质8(卡诺重心定理)可得出结论。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,
即其坐标为[(X1+X2+X3)/3,(Y1+Y2+Y3)/3];
空间直角坐标系——横坐标:(X1+X2+X3)/3,纵坐标:(Y1+Y2+Y3)/3
5、三角形内到三边距离之积最大的点。
证明:如图所示,点P是△ABC内的一点,连接PA,PB,PC,作点P到BC、AC、AB的垂线段,垂足分别为D、E、F,延长AP交BC于M。记△ABC的面积为S,BC为a,AC为b,AB为c,PD为a',PE为b',PF为c'。
∵aa'/2+bb'/2+cc'/2=S△BCP+S△ACP+S△ABP=S
∴aa'+bb'+cc'=2S
由均值不等式知,[(aa'+bb'+cc')/3]^3≥aa'bb'cc'=(abc)*(a'b'c'),当且仅当aa'=bb'=cc'时等号成立。
∴a'b'c'≤[(aa'+bb'+cc')/3]^3/(abc)=(S/3)^3/(abc)=S^3/(27abc),当且仅当aa'=bb'=cc'时等号成立。
∴a'b'c'只有当aa'=bb'=cc'时才会取得最大值。
此时,S△ABP=cc'/2=bb'/2=S△ACP,由燕尾定理知,BM/CM=S△ABP/S△ACP=1。
∴此时BM=CM,M是BC的中点,AM是△ABC的中线,P在△ABC中BC边的中线上。
同理可证此时P在△ABC中AB、AC边的中线上。
∴当a'b'c'最大时,P是△ABC的重心,即重心是三角形内到三边距离之积最大的点。
6、在△ABC中,若MA向量+MB向量+MC向量=0(向量) ,则M点为△ABC的重心,反之也成立。
7、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+向量OC)
8、卡诺重心定理:若G为三角形ABC的重心,P为三角形ABC所在平面上任意一点,则PA^2+PB^2+PC^2=GA^2+GB^2+GC^2+3PG^2=1/3(a^2+b^2+c^2)+3PG^2
证明:GA^2 + PG^2 = PA^2 + 2GA*PGcos(AGP)
GB^2 + PG^2 = PB^2 + 2GB*PGcos(BGP)
GC^2 + PG^2 = PC^2 + 2GC*PGcos(CGP)
GA^2 + GB^2 + GC^2 + 3PG^2 = PA^2 + PB^2 + PC^2 + 2PG[GA*cos(AGP) + GB*cos(BGP) + GC*cos(CGP)]
延长射线AG,交BC于D,继续延长,使得GD = DE = AG/2.
连接EB,EC,
四边形GBEC为平行四边形.
EB = GC
延长射线PG,
过点B作PG的延长线的垂线,垂足为F.
过点E作PG的延长线的垂线,垂足为H.
BE与PG的延长线的交点为点Q.
则,因GC//BE,角CGP = 角EQG = 角BQF
GH = GE*cos(EGH) = GA*cos(AGP)
HF = EB*cos(BQF) = GC*cos(EQG) = GC*cos(CGP)
而
GH + HF = GF = GB*cos(BGF) = GB*cos(PI-BGP) = -GB*cos(BGP),
因此,
GA*cos(AGP) + GB*cos(BGP) + GC*cos(CGP) = 0,
GA^2 + GB^2 + GC^2 + 3PG^2
= PA^2 + PB^2 + PC^2 + 2PG[GA*cos(AGP) + GB*cos(BGP) + GC*cos(CGP)]
= PA^2 + PB^2 + PC^2
利用上面的结论,
令P与A重合,有
GA^2 + GB^2 + GC^2 + 3GA^2
= AB^2 + AC^2 ...(1)
令P与B重合,有
GA^2 + GB^2 + GC^2 + 3GB^2
= AB^2 + BC^2 ...(2)
令P与C重合,有
GA^2 + GB^2 + GC^2 + 3GC^2
= BC^2 + AC^2 ...(3)
(1),(2),(3)相加,有
3[GA^2 + GB^2 + GC^2] + 3[GA^2 + GB^2 + GC^2] = 2[AB^2 + BC^2 + AC^2],
GA^2 + GB^2 + GC^2 = [AB^2 + BC^2 + AC^2]/3 = (a^2 + b^2 + c^2)/3.
证毕.
什么叫三角形的重心
三角形的重心是指三角形三条边的中点所连成的线段交点。这个交点就是三角形的重心。接下来详细解释三角形的重心这一概念:一、三角形重心的定义 在三角形中,重心是一个特殊的点。它是三角形三条边的中点所连成的三条线段。这个点的存在对于理解三角形的几何特性非常重要。二、重心与三角形的几何特性 ...
三角形的重心是什么,求画图,有什么性质
三角形重心是三角形三条中线的交点。性质一、重心到顶点的距离与重心到对边中点的距离之比为2:1。性质二、重心和三角形3个顶点组成的3个三角形面积相等。性质三、重心到三角形3个顶点距离平方的和最小。 (等边三角形)性质四、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数。性质五、三角形...
三角形的重心的性质
三角形的重心是指三角形三条中线的交点,它被称为重心或质心。一、三角形的重心的重要性质 重心到三个顶点的距离相等:从重心到三个顶点的距离相等,即重心到每条边的中点的距离相等。三个重心到对边中点的线段交于一点:连接重心和三个对边中点的线段交于一点,这个点即为重心。重心将中线按比例分成2...
什么是三角形重心
三角形重心是三角形三条中线的交点。详细解释如下:1. 重心的定义 在几何学中,重心是一个非常重要的概念。对于三角形而言,重心是所有顶点所连线段的中点连线的交点。换句话说,三角形的三条中线相交于一点,这个点就是三角形的重心。2. 中线的概念 中线是三角形一顶点和与之相对的边的中点所连接的...
什么是三角形的重心?
三角形重心是三角形三条中线的交点。当几何体为匀质物体时,重心与形心重合。直角三角形的重心在斜边中点,等腰三角形的重心是三条高的交点(所有的都是),它和它的中心、内心、外心在同一条直线上,也叫心连心。
三角形的重心、垂心是什么?
内心:三角形三内角平分线交于一点,称为三角形内心;中心:正三角形的重心、垂心、外心、内心重合,称为正三角形的中心。三角形“五心歌”三角形有五颗心;重、垂、内、外和旁心,五心性质很重要,认真掌握莫记混.重 心 三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,重心...
三角形重心是什么?
三角形的五心三角形五心是指三角形的重心、外心、内心、垂心、旁心。三条中线的交点是重心,三边垂直平分线的交点是外心,三条内角平分线的交点为内心,三角形三条高线的交点为垂心。重心、外心、内心、垂心只有一个,但旁心有三个。与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆,...
三角形的重心是什么?
三角形重心是三角形内部的一个特殊点。它是三条从顶点出发,穿过相对边中点的线段的交点。也可以说,重心是三角形三条边的中点连线的交点。二、几何性质 重心具有许多重要的几何性质。例如,从重心出发,到三角形的每个顶点的线段,与相应的中线之间的比例是固定的,即等于该中线的两倍长度。此外,重心到...
什么叫三角形的重心?
三角形重心的定义是三角形三条中线的交点。数学上的重心是指三角形的三条中线的交点,其证明定理有燕尾定理或塞瓦定理,应用定理有梅涅劳斯定理、塞瓦定理。对于均质物体,如在几何形体上具有对称面、对称轴或对称中心,则该物体的重心或形心必在此对称面、对称轴或对称中心上。下面介绍几种常用的确定重心...
重心是什么的交点
1、三角形重心是三角形三边每一边的三条中线的交点。2、三角形有重心、外心、垂心、内心、旁心等五个心,它们都是三角形的重要相关点。重心是三条中线的交点,垂心是三条高的交点,外心是三角形外接圆的圆心,即三条垂直平分线的交点,内心是三角形内切圆的圆心,即三条角平分线的交点。