用什么方法算的
追答裂项法
追问说说
追答1/1*3=(1-1/3)÷2
1/2*4=(1/2-1/4)÷2
1/3*5=(1/3-1/5)÷2
………………………….....
1/18*20=(1/18-1/20)÷2
数学问题,求方法步骤!1\/1*3+1\/2*4+1\/3*5+...+1\/18*20 简便运算
1\\1*3=3(乘数)\\1(除数)=3 1\\2*4=4(乘数)\\2(除数)=2。。。以此类推
一道初中数学计算题:1\/1*3+1\/2*4+1\/3*5+1\/4*6+1\/5*7+1\/6*8---1\/17...
=1\/2[1+1\/2-1\/3+1\/3-1\/4+1\/4-...-1\/18+1\/18-1\/19-1\/20]=1\/2(1+1\/2-1\/19-1\/20)=(1\/2)*(531\/380)=531\/760
1\/1*3+1\/2*4+1\/3*5+1\/4*+……+n\/n(n+1)
原式=1\/2 * [1-1\/3+1\/2-1\/4+1\/3-1\/5+……+1\/(n-1)-1\/(n+1)1\/n-1\/(n+2)]=1\/2 * [1+1\/2-1\/(n+1)-1\/(n+2)]=(3n^2+5n)\/(4n^2+12n+8)
数学问题解答1\/1*3+1\/3*5+1\/5*7+1\/7*9+1\/9*11+1\/11*13+1\/13*15+1\/...
1\/3*5=(1\/3-1\/5)1\/2 所以1\/1*3+1\/3*5+1\/5*7+1\/7*9+1\/9*11+1\/11*13+1\/13*15+1\/15*17+1\/17*19+1\/19*21=1\/2(1\/1-1\/3+1\/3-1\/5+1\/5-1\/7...+1\/17-1\/19+1\/19-1\/21)=(1\/2)*(1-1\/21)=10\/21 ...
简便计算(数学题)1\/1*2+1\/2*3+……+1\/18*19
2014-04-21 1\/1*2*3+1\/2*3*4+……+1\/18*19*20 3 2009-01-16 1*2*3*4分之1+2*3*4*5分之1+…+17*18*... 18 2008-07-11 计算(1\/2+1\/3+1\/4+…+1\/20)+(2\/3+2\/... 45 2012-05-19 计算题(简便运算) (20-2\/55×1)+(19-2\/55... 21 2013-04-11 怎样简便计算...
数学问题
=1+(1\/2*1\/3)+1+(1\/3*1\/4)...+1+(1\/20*1\/21)=19+(1\/2-1\/3)+(1\/3-1\/4)+...(1\/20-1\/21)=19+1\/2-1\/21 =19又19\/42 1\/3+1\/15+1\/35+1\/63+1\/99+1\/143 =1\/1*3+1\/3*5+...+1\/11*13 =1\/2(1\/1-1\/3)+1\/2(1\/3-1\/5)+...+1\/2(1\/11-1\/...
请问下面的问题怎么做?
1\/1+1\/2-1=1\/2,1\/3+1\/4-1\/2=1\/12,1\/5+1\/6-1\/3=1\/30,1\/7+1\/8-1\/4=1\/56,...找规律 1\/(2n-1)+1\/(2n)-1\/n=1\/[(2n-1)x2n] 1006 七年级数学问题1\/3+1\/3*1\/5+1\/5*1\/7+1\/7*1\/9+...1\/99*1\/101=? 原式=(1-1\/3+1\/3-1\/5+1\/5-1\/7+…...
两道高中数学题 要过程 (1) 求1\/1*4+1\/2*5+1\/3*6+...+至2017项 之和...
两道属于典型题目 第一:通项an=1\/n(n+3)=1\/3(1\/n-1\/n+3),然后相加最后相消即可 第二题,等差数列与等比数列乘积,用乘公比a,两式相减错位相消即可得出
数学问题 1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+L+100)的...
如下:1+2+3+...+n=n(n+1)\/2 1\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 性质 若已知一个...
数学问题提问1\/1*2+1\/2*3+1\/3*4+1\/4*5...+1\/98*99+1\/99*100=
1\/1*2+1\/2*3+1\/3*4+1\/4*5...+1\/98*99+1\/99*100 =1-1\/2+1\/2+1\/3-1\/3+1\/4+1\/4-1\/5+……+1\/99-1\/100 =1-1\/100 =99\/100