已知,lim x→0 [sin6x+xf(x)]/x^3=0 求:lim x→0 [6+f(x)]/x^2=?

我需要不用泰勒公式的解法!

第1个回答  2012-04-10
lim(x-->0) [sin(6x) + xf(x)]/x³ = 0,要弄做不定式,分子和分母都要趋向0
sin(6x) + xf(x) = 0
xf(x) = - sin(6x)
f(x) = - (sin6x)/x

lim(x-->0) [6 + f(x)]/x²
= lim(x-->0) [6 - (sin6x)/x]/x²
= lim(x-->0) [6x - sin(6x)]/x³
= lim(x-->0) [6 - 6cos(6x)]/(3x²) <== 洛必达法则
= lim(x-->0) [- 6(- 6)sin(6x)]/(6x) <== 再洛必达法则
= lim(x-->0) 36 · sin(6x)/(6x)
= 36

已知,lim x→0 [sin6x+xf(x)]\/x^3=0 求:lim x→0 [6+f(x)]\/x^2=...
lim(x-->0) [sin(6x) + xf(x)]\/x³ = 0,要弄做不定式,分子和分母都要趋向0 sin(6x) + xf(x) = 0 xf(x) = - sin(6x)f(x) = - (sin6x)\/x lim(x-->0) [6 + f(x)]\/x²= lim(x-->0) [6 - (sin6x)\/x]\/x²= lim(x-->0) [6x - s...

已知lim x→0 [sin6x+xf(x)]\/x^3=0, 求 lim x→0 [6+f(x)]\/x^2...
lim x→0 [sinx-x]\/x^3,如果按照你的那种做法,显然结果是0。实际上答案是-1\/6.此处应用的是一个很重要的公式——泰勒公式(只展开有限项目,后边的高阶项可视为高阶无穷小)sinx=x-1\/6*x^3.回到你的这道题,lim [sin6x+xf(x)]\/x^3=0 也就是 lim[6x-1\/6*(6x)^3+xf(x)...

已知lim x→0 [sin6x+xf(x)]\/x^3=0, 求 lim x→0 [6+f(x)]\/x^2...
简单计算一下即可,答案如图所示

lim x→0 [sin6x+xf(x)]\/x^3=0,求 lim x→0 [6+f(x)]\/x^2
因为lim x→0 [sin6x\/(6x)]=1 所以,lim x→0 [sin6x+xf(x)]\/x^3 =lim x→0 [6x+xf(x)]\/x^3 =lim x→0 [6+f(x)]\/x^2 =0

lim(x趋近于0)[sin6x+xf(x)]\/x^3=0,则lim(x趋近于0)[6+f(x)]\/x^2=?
,lim(x趋近于0)[sin6x+xf(x)]\/x^3=0,则知道f(x) 是低天X^2的。所以(6+F(X))是低于X^2的。从而 lim(x趋近于0)[6+f(x)]\/x^2=0.

x趋于0,lim x-o ( sin6x+xf(x))\/x3=0 ,lim x-o (6+f(x))\/x2=?
解析:实际上,所要求的极限就是原极限的变形!原式=lim(x→0)[sin6x+xf(x)]\/x³=lim(x→0)[x(sin6x)\/x+f(x)]\/x³=lim(x→0)[x(6sin6x)\/6x+f(x)]\/x³=lim(x→0)[6+f(x)]\/x²=0 导数第二步就是所要求的。即 lim(x→0)[6+f(...

...sin6x+xf(x))\/x^3=0,求limx趋近于0,(6+f(x))\/x^2的值
lim x→0,[sin6x + xf(x)]\/x³=0+α,其中lim x→0,α=0 即f(x)\/x² = -sin6x\/x³ + α 从而lim x→0,[6+f(x)]\/x²=lim x→0,( 6\/x² - sin6x\/x³ + α )=lim x→0,(6x-sin6x)\/x³,用洛必达法则 =lim x→0,[...

若极限lim(x-0)[sin6x+xf(x)]\/x^3=0,则lim(x-0)[6+f(x)]\/x^2=?
简单计算一下即可,答案如图所示

若lim [sin6x+xf(x)]\/x^3=0,则lim [6+f(x)]\/x^2是多少? (x是趋近0)
lim [sin6x+xf(x)]\/x^3=0,则lim [6+f(x)]\/x^2是36(x是趋近0)(x→0)lim[sin6x+xf(x)]\/x^3=0 属于0-0型,可以应用洛必答法则:(x→0)lim[6cos6x+f(x)+xf'(x)]\/(3x^2)=0 (x→0)lim[-36sin6x+f'(x)+f'(x)+xf''(x)]\/(6x)=0 (x→0)lim[-216cos...

求极限当x→0若lim[sin6x+x f(x)]\/x3=0,求lim[6+ f(x)]\/x2
代入得到 lim[sin6x+xf(x)]\/x^3=6x-(6x)^3\/3!+o(x^3)+f(0)x+f'(0)x^2+1\/2f''(0)x^3+o(x^3)\/x^3=0 x→0 整理得lim[6x+f(0)x+f'(0)x^2]\/x^3+1\/2f''(0)-36=0 从而f(0)=-6 f'(0)=0 1\/2f''(0)-36=0 f''(0)=72 lim[6+ f(x)]\/x^2=...

相似回答