西塔潘猜想有意义吗??在实际中 有什么作用。。

如题所述

第1个回答  2012-03-27
意义就证明你比别人懂的多,可以把那么多没用的东西联系到一起,然后还有SB给你很多钱作为奖励
第2个回答  2012-04-22
几乎百分百的科学成果(而非技术领域)在其诞生之初都被世人认为是没有用的。其实问有没有用的人基本上都是没有什么用的人!追问

看了你的回答,说明你才是个没有用的人。

第3个回答  2012-03-25
几乎没有,但也要仁者见仁智者见智!本回答被提问者采纳
第4个回答  2012-03-28
不是什么了不起的成就,数学里的问题一大堆。有些初等几何题甚至可以难倒大数学家

西塔潘猜想有意义吗??在实际中 有什么作用。。
意义就证明你比别人懂的多,可以把那么多没用的东西联系到一起,然后还有SB给你很多钱作为奖励

西塔潘猜想到底是什么
西塔潘猜想是关于图论和组合数学领域的一个重要问题。具体地说,它是一个关于图的独立集与顶点覆盖关系的猜想。这个猜想是关于图的边与顶点之间的复杂关系的深层次探索,涉及到了图论的许多重要概念和理论。这个猜想具有重大的理论意义和实践价值,它不仅推进了数学领域中图论研究的进步,而且也在计算机科学...

西塔潘猜想到底是什么
西塔潘猜想的实质是对这种"必然性"的求证,对于理解复杂网络和随机现象具有深远的意义。简单来说,西塔潘猜想是对拉姆齐定理的深化,它像是一个数学游戏,试图找出在群体中,无论人们如何随机组合,总会出现某些预设的结构。它不仅引发了数学家们的深入研究,也对其他学科如计算机科学、社会学等领域产生了影...

西塔潘猜想是什么 那个22岁教授刘路研究出来的什么原理 对我们现实生 ...
西塔潘猜想是一个反推数学领域关于拉姆齐二染色定理证明强度的猜想。在组合数学上,拉姆齐(Ramsey)定理是要解决以下的问题:要找这样一个最小的数n,使得n个人中必定有k个人相识或l个人互不相识。2011年5月,由北京大学、南京大学和浙江师范大学联合举办的逻辑学术会议在浙江师范大学举行,中南大学数学科学...

西塔潘猜想是什么?
这个猜想的重要性在于,它对于代数几何领域的研究具有重要的推动作用。如果西塔潘猜想被证明为真,那么这将为我们理解代数曲面和有理曲线的性质提供新的工具和思路。同时,这个猜想的解决也将有助于推动其他相关领域的发展,比如代数数论、代数几何和复几何等。尽管西塔潘猜想已经引起了广泛的关注和研究,但...

西塔潘猜想是什么 什么叫西塔潘猜想有什么用
他们发现了一些子系统间存在强弱的比较关系:和 RT2 2 形式接近的 RT3 2 比 ACA 0 要强(其实一样),而 RT2 2 则不比 ACA 0强,( ACA 0 比 WKL 0 强是基本的)等等[1],从这些结果,他们隐约认为 RT22 和 WKL 0 的强度是可以比较的,1995年英国数理逻辑学家西塔潘在一篇论文[2]中...

西塔潘猜想是什么 那个22岁教授刘路研究出来的什么原理 对我们现实生 ...
这个简单的结论,虽然源自于理论数学,但其背后的原理和逻辑却对现实生活有着潜在的影响,可能涉及社交网络分析、数据组织等领域。尽管西塔潘猜想本身可能并不直接应用于日常生活中,但它的解决展示了数学在解决复杂问题上的力量,以及理论研究如何推动科学前沿的进展。

请您帮我解释解释西塔潘猜想?
西塔潘猜想,这个20世纪90年代由英国数理逻辑学家西塔潘提出的数学猜想,聚焦于拉姆齐二染色定理证明的严谨性。拉姆齐二染色定理,原名来自于弗兰克·普伦基特·拉姆齐,他在1930年的论文《形式逻辑上的一个问题》中证明了R(3,3)=6,这一成果奠定了其在数学领域的地位。西塔潘猜想深入探讨了这个定理证明的...

什么是西塔潘猜想
西塔潘猜想是一种数学领域的未解问题,它涉及到了代数几何和数论等多个数学分支。该猜想由英国数学家西塔潘在20世纪90年代提出,是关于一类特定类型的曲线——模曲线上的有理点的问题。详细来说,模曲线是一种在代数几何中研究的对象,它与复数域上的椭圆函数和模形式有着密切的联系。西塔...

西塔潘猜想是什么?
西塔潘猜想又称“拉姆齐二染色定理”,是由英国数理逻辑学家西塔潘于上个世纪90年代提出的一个猜想。在组合数学上,拉姆齐(ramsey)定理是要解决以下的问题:要找这样一个最小的数n,使得n个人中必定有k个人相识或l个人互不相识。

相似回答
大家正在搜