高三数学必考知识点梳理归纳

如题所述

高三数学必考知识点总结【五篇】1

一、函数的定义域的常用求法:

1、分式的分母不等于零;

2、偶次方根的被开方数大于等于零;

3、对数的真数大于零;

4、指数函数和对数函数的底数大于零且不等于1;

5、三角函数正切函数y=tanx中x≠kπ+π/2;

6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

二、函数的解析式的常用求法:

1、定义法;

2、换元法;

3、待定系数法;

4、函数方程法;

5、参数法;

6、配方法

三、函数的值域的常用求法:

1、换元法;

2、配方法;

3、判别式法;

4、几何法;

5、不等式法;

6、单调性法;

7、直接法

四、函数的最值的常用求法:

1、配方法;

2、换元法;

3、不等式法;

4、几何法;

5、单调性法

五、函数单调性的常用结论:

1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。

2、若f(x)为增(减)函数,则—f(x)为减(增)函数。

3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数。

4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

六、函数奇偶性的常用结论:

1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。

2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

3、一个奇函数与一个偶函数的积(商)为奇函数。

4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(—x)]+1/2[f(x)+f(—x)],该式的特点是:右端为一个奇函数和一个偶函数的和。

高三数学必考知识点总结【五篇】2

a(1)=a,a(n)为公差为r的等差数列

通项公式:

a(n)=a(n—1)+r=a(n—2)+2r=、、、=a[n—(n—1)]+(n—1)r=a(1)+(n—1)r=a+(n—1)r、

可用归纳法证明。

n=1时,a(1)=a+(1—1)r=a。成立。

假设n=k时,等差数列的通项公式成立。a(k)=a+(k—1)r

则,n=k+1时,a(k+1)=a(k)+r=a+(k—1)r+r=a+[(k+1)—1]r、

通项公式也成立。

因此,由归纳法知,等差数列的通项公式是正确的。

求和公式:

S(n)=a(1)+a(2)+、、、+a(n)

=a+(a+r)+、、、+[a+(n—1)r]

=na+r[1+2+、、、+(n—1)]

=na+n(n—1)r/2

同样,可用归纳法证明求和公式。

a(1)=a,a(n)为公比为r(r不等于0)的等比数列

通项公式:

a(n)=a(n—1)r=a(n—2)r^2=、、、=a[n—(n—1)]r^(n—1)=a(1)r^(n—1)=ar^(n—1)、

可用归纳法证明等比数列的通项公式。

求和公式:

S(n)=a(1)+a(2)+、、、+a(n)

=a+ar+、、、+ar^(n—1)

=a[1+r+、、、+r^(n—1)]

r不等于1时,

S(n)=a[1—r^n]/[1—r]

r=1时,

S(n)=na、

同样,可用归纳法证明求和公式。

高三数学必考知识点总结【五篇】3

1、函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(—x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(—x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2、复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3、函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=—x+a)的`对称曲线C2的方程为f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a—x,2b—y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a—x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x—a)与y=f(b—x)的图像关于直线x=对称;

4、函数的周期性

(1)y=f(x)对x∈R时,f(x+a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=—f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

5、方程k=f(x)有解k∈D(D为f(x)的值域);

6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7、(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符号由口诀“同正异负”记忆;

(4)alogaN=N(a>0,a≠1,N>0);

8、判断对应是否为映射时,抓住两点:

(1)A中元素必须都有象且;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10、对于反函数,应掌握以下一些结论:

(1)定义域上的单调函数必有反函数;

(2)奇函数的反函数也是奇函数;

(3)定义域为非单元素集的偶函数不存在反函数;

(4)周期函数不存在反函数;

(5)互为反函数的两个函数具有相同的单调性;

(6)y=f(x)与y=f—1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A);

11、处理二次函数的问题勿忘数形结合

二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12、依据单调性

利用一次函数在区间上的保号性可解决求一类参数的范围问题;

13、恒成立问题的处理方法

(1)分离参数法;

(2)转化为一元二次方程的根的分布列不等式(组)求解;

高三数学必考知识点总结【五篇】4

1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2、判定两个平面平行的方法:

(1)根据定义——证明两平面没有公共点;

(2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面;

(3)证明两平面同垂直于一条直线。

3、两个平面平行的主要性质:

(1)由定义知:“两平行平面没有公共点”;

(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”;

(3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”;

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;

(5)夹在两个平行平面间的平行线段相等;

(6)经过平面外一点只有一个平面和已知平面平行。

高三数学必考知识点总结【五篇】5

1、直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

2、直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:

注意下面四点:

(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;

(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

3、直线方程

点斜式:

直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示、但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。 (1)、高三数学知识点及公式总结大全 (2)、高三数学必考知识点归纳公式大全 (3)、高三女儿数学只考了108分 老爸的这一做法绝了 (4)、2019扬州高三模拟统考语文数学试题难度点评 (5)、2019年湖北高三2月联考数学理试题及答案 (6)、高三数学教师教学工作总结 (7)、高三复习班数学班主任工作总结
温馨提示:内容为网友见解,仅供参考
无其他回答

高三数学必考知识点梳理归纳
(1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3、两个平面平行的主要性质: (1)由定义知:“两平行平面没有公共点”; (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”; (3)两个...

高三数学知识点框架整理
高三数学知识点框架整理 一、对数函数 1. 加法法则:(MN)=logaM+logN 2. 减法法则:loga(M\/N)=logaM-logaN 3. 指数法则:logaM^n=nlogaM(n=R)4. 变换法则:logbN=logaN\/logab(a>0,b>0,N>0a、b均不等于1)二、简单几何体的面积与体积 1. 直棱柱侧面积:S直棱柱侧=c_h(底面周长乘以...

高三数学函数部分有哪些必考知识点?
(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。考点19:数据整理与统计图表 (1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

高考数学必考知识点归纳总结
1.在掌握等差数列等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识...

高三数学知识点归纳有哪些?
高三数学知识点归纳有如下:一、圆的公式 1、圆体积=4\/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r 4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】二、椭圆公式 1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长...

高三年级数学必修三知识点整理
1.高三年级数学必修三知识点整理 空间中的垂直关系 1、直线与平面垂直 定义:直线与平面内任意一条直线都垂直 判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直 性质:垂直于同一直线的两平面平行 推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于...

高三数学有哪些重要知识点(主要是高考考哪些知识点分数多)
公理1:如果一条直线上的两点在同一个平面内,那么这条直线上的所有点都在此平面内。公理2:过不在一条直线上的三点,有且只有一个平面。公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共 直线。公理4:平行于同一条直线的两条直线平行。定理:空间中如果两个角的两...

高三数学知识点归纳有哪些?
高三数学知识点归纳:1、数列的定义、分类与通项公式。(1)数列的定义:①数列:按照一定顺序排列的一列数。②数列的项:数列中的每一个数。(2)数列的分类:分类标准类型满足条件。项数有穷数列项数有限。无穷数列项数无限。项与项间的大小关系递增数列an+1>an其中n∈N。递减数列an+1。常数列an+1...

高三数学重要知识点整理
【篇一】高三数学重要知识点整理 一、求动点的轨迹方程的基本步骤 ⒈建立适当的坐标系,设出动点M的坐标; ⒉写出点M的集合; ⒊列出方程=0; ⒋化简方程为最简形式; ⒌检验。 二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。 ⒈直译法:直接...

高三数学知识点总结归纳
★ 高三数学知识点归纳 ★ 高三数学必考知识点复习总结 ★ 高三数学知识点归纳最新 ★ 高三数学必考知识点汇总 ★ 高三年级数学知识点整理总结 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 为你推荐:特别推荐 为什么麦当劳一瓶冰露卖 7.5 元? 有哪些揭露讽刺韩国财阀的电影? 为什么中国赴美学生在...

相似回答
大家正在搜