【高中数学】排列组合

3个舞蹈节目,4个小品节目,安排节目单,要求3个舞蹈节目互不相邻,有多少种方法。

我这么算错哪儿了:
A33*A42*A61*A71
先排3个舞蹈,然后中间两个空必须有小品,*A42,剩下两个小品,一个去排有6个位置,*A61,最后一个有7个位置*A71

哪儿错了,高手指教!!!

第1个回答  2012-04-04
应该用插空法来计算
首先先排好4个小品节目,有A44种
然后出现了5个空
然后由三个舞蹈节目来插空 方法数是A53
所以答案是A44*A53=1440.
上面的解法错在有重复
假定已经排好了前5个
设为ABCDE
第六个设为6排在AB之间然后第七个(设为7)排在A6之间是一种
但是若第六个排的是上面那种之中的第七个7
且排在了AB之间而第七个排的是上面的6 而且排在了7B之间
那么这两种方法是一样的,却在上面计算了两次。本回答被提问者采纳
第2个回答  2012-04-04
错在你直接排A42,你应该先选2个小品C42在A22,然后再A61
其实你不用这么算,直接先排小品A44,再排舞蹈A53
合起来就是A42*A53
第3个回答  2012-04-04
中间两个空不一定只安排两个小品节目,也可能有三个或者四。先把四个小品排一下,共有五个空,在5个空中选三个安排舞蹈:A44A53=24*60=1440

高中数学的排列组合的定义
排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。

高中数学排列组合公式
排列a与组合c计算方法计算方法如下排列A(n,m)=n×(n-1).(n-m+1)=n!\/(n-m)!(n为下标,m为上标,以下同)组合C(n,m)=P(n,m)\/P(m,m)=n!\/m!(n-m)!;例如A(4,2)=4!\/2!=4*3=12C(4,2)=4!\/(2!*2!)=4*3\/(2*1)=6排列组合定义从n个不同元素中,任...

高中数学排列组合公式有哪些?
高中数 (参考 ,文档)学中常见的排列组合公式有:1. 排列的计算公式: - 基本排列公式:$A_n^n=n!$ - 从$n$个不同元素中取$r$个元素进行排列的情况数:$A_n^r=\\\\frac{n!}{(n-r)!}$2. 组合的计算公式: - 基本组合公式:$C_n^0=C_n^n=1$ - 从$n$个不同元素中取...

高中排列组合公式是什么
高中数学排列组合公式如下排列A(n,m)=n×(n-1)。(n-m+1)=n!\/(n-m)!(n为下标,m为上标,以下同)。组合C(n,m)=P(n,m)\/P(m,m)=n!\/m!(n-m)!。例如A(4,2)=4!\/2!=4*3=12。C(4,2)=4!

高中数学排列组合公式是什么?
高中排列组合公式是:C(n,m)=A(n,m)\/m!=n!\/m!(n-m)!与C(n,m)=C(n,n-m)。例如C(4,2)=4!\/(2!*2!)=4*3\/(2*1)=6,C(5,2)=C(5,3)。排列组合c计算方法:C是从几个中选取出来,不排列,只组合。C(n,m)=n*(n-1)*...*(n-m+1)\/m!例如c53=5*4*3÷...

高中数学,排列组合。要解释。有好评
【解析】(1)选出一个盒子不放球,有4种选择,4个球中有2个放入同一盒中,C(4,2)种 分成3组后,放入3个盒中,有A(3,3)种 所以,共有4×C(4,2)×A(3,3)=144(种)(2)同(1),144种 (3)4个球分成2组 ①1+3,有4种分法 ②2+2,有3种分法 所以,共有4+...

高中数学排列组合,谢谢!
排列组合是高中数学中的重要部分,涉及到从n个不同元素中取出m个元素进行排列或组合的问题。排列是从n个不同元素中取出m个元素按一定的顺序排成一列,它的数目通常用符号P或P表示。组合是从n个不同元素中取出m个元素组成一组,不考虑顺序,它的数目通常用符号C或C表示。解释:1. 排列的概念及计算...

高中数学排列组合这种式子怎么计算?
高中数学的排列组合可以使用不同的方法计算,以下是几种常见的方法:1. 排列计算公式:对于给定的n个元素中取出m个元素的排列数,可以使用排列计算公式: n P m = n! \/ (n - m)! 其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 1,0! = 1。2. 组合计算...

如何求解高中数学题目中的排列组合问题?
在高中数学中,排列与组合是一个非常重要的概念,它们在各种问题中都有广泛的应用。下面我将介绍一些解决排列和组合问题的基本方法。1. 排列 排列是从n个不同元素中取出m(m≤n)个不同元素进行排列的方法数,通常用P(n,m)表示。公式:P(n,m)=n!\/(n-m)!例如,从A、B、C、D四个字母中取出3...

如何解决高中数学的排列组合问题?
高中数学排列组合秒杀技巧如下:1、相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列。2、相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端。3、定序问题缩倍法:在排列问题中限制...

相似回答