热塑性复合材料的性能是什么

如题所述

热塑性复合材料的性能是什么
具有高刚性、高热变形温度、低收缩率、低挠曲性、尺寸稳定以及低密度、低价格等特点。热塑性树脂基复合材料是20世纪80年代发展起来的,主要有长纤维增强粒料(LFP)、连续纤维增强预浸带(MITT)和玻璃纤维毡增强型热塑性复合材料(GMT)。
根据使用要求不同,树脂基体主要有PP、PE、PA、PBT、PEI、PC、PES、PEEK、PI、PAI等热塑性工程塑料,纤维种类包括玻璃纤维、碳纤维、芳纶纤维和硼纤维等一切可能的纤维品种。
随着热塑性树脂基复合材料技术的不断成熟以及可回收利用的优势,该品种的复合材料发展较快,欧美发达国家热塑性树脂基复合材料已经占到树脂基复合材料总量的30%以上。高性能热塑性树脂基复合材料以注射件居多,基体以PP、PA为主。产品有管件(弯头、三通、法兰)、阀门、叶轮、轴承、电器及汽车零件、挤出成型管道、GMT模压制品(如吉普车座椅支架)、汽车踏板、座椅等。玻璃纤维增强聚丙烯在汽车中的应用包括通风和供暖系统、空气过滤器外壳、变速箱盖、座椅架、挡泥板垫片、传动皮带保护罩等。
滑石粉填充的PP具有高刚性、高强度、极好的耐热老化性能及耐寒性。滑石粉增强PP在车内装饰方面有着重要的应用,如用作通风系统零部件,仪表盘和自动刹车控制杠等,例如美国HPM公司用20%滑石粉填充PP制成的蜂窝状结构的吸音天花板和轿车的摇窗升降器卷绳筒外壳。云母复合材料具有高刚性、高热变形温度、低收缩率、低挠曲性、尺寸稳定以及低密度、低价格等特点,利用云母/聚丙烯复合材料可制作汽车仪表盘、前灯保护圈、挡板罩、车门护栏、电机风扇、百叶窗等部件,利用该材料的阻尼性可制作音响零件,利用其屏蔽性可制作蓄电池箱等。
我国的热塑性树脂基复合材料的研究开始于20世纪80年代末期,近十年来取得了快速发展,2000年产量达到12万吨,约占树脂基复合材料总产量的17%,,所用的基体材料仍以PP、PA为主,增强材料以玻璃纤维为主,少量为碳纤维,在热塑性复合材料方面未能有重大突破,与发达国家尚有差距。
碳纤维复合材料有哪些重点应用领域
复合材料的用量已成为衡量军用装备先进性的重要标志。复合材料的兴起丰富了现代材料家族。
尤其是具备高强度、高模量、低比重碳纤维增强复合材料的出现,使其成为各类军民装备重要的候选材料之一。
美国国防部在2025年国防材料发展预测中提到,只有复合材料能够将强度、模量和耐高温的指标在现有基础上同时提高25%以上。正是如此,复合材料正成为航空以及国防装备的关键材料。一、航空航天领域纤维增强复合材料在飞机上的应用最早可以追溯到30年前,美国海军F-14和空军F-15战斗机尾翼部分采用硼纤维环氧树脂材料。在这之后,人们发现了碳纤维复合材料的优异性能,开始逐渐应用在军队及运输机上。
碳纤维复合材料首次被应用在飞机上,主要是一些二级结构,包括整流罩、控制仪表盘和小的机舱门。但随着工艺技术的进步,碳纤维复合材料也逐渐被用于机翼、机身等其它部分。航天工业之所以选择使用碳纤维复合材料,不仅是因为这种材料能够减轻机身重量,同时其具备耐腐蚀、抗疲劳等优良特性。
但是与传统金属材料相比,碳纤维复合材料由于成本过高仍然未被广泛应用。二、汽车工业碳纤维复合材料的材料性能及发展趋势顺应了汽车工业轻量化的发展需求,特别是随着新能源汽车的发展,碳纤维复合材料在汽车上将得到越来越广泛的应用。鉴于碳纤维复合材料具备的优异性能,目前已经逐渐开始被应用到国外汽车内外饰、底盘以及电器元件当中。
未来,碳纤维复合材料以及热塑性复合材料等在汽车工业上的应用将替代传统的金属零部件。三、海洋船舶上世纪40年代,美国海军首次将碳纤维复合材料用于船舶建造。得益于它在海水环境中表现出的优异性能,在海洋船舶中的应用非常广泛。
复合材料优异舒适性的设计理念和无缝船体的优势进一步推动了各种复合材料船舶的开发。近年来,碳纤维复合材料在船只上的使用不断增加,主要包括船壳、地板、甲板、舱壁,以及管道系统、油箱等上层建筑。碳纤维复合材料的应用不仅降低了制造和维修成本,改善外观,还可以减轻吨位,提高安全性。四、风力发电在风力发电领域,复合材料是制造风力发电叶片及其它重要结构部件的主要材料,叶片90%以上重量由复合材料组成,能够满足开发大型化、轻量化、高性能、低成本的发电叶片的要求。
随着大丝束碳纤维的广泛应用,碳纤维价格的不断降低,碳纤维在大型叶片中的应用已成为一种趋势。未来风力发电叶片制造中,碳纤维代替部分玻璃纤维应用于叶片、且用量逐步增加是高性能碳纤维复合材料发展的必然结果。体育用品目前,碳纤维增强复合材料在体育器材领域已形成了较大的市场。随着体育运动对运动器材越来越苛刻的要求,将碳纤维增强复合材料运用到体育用品中来是21世纪体育器材的一大趋势。
自行车20世纪80年代中期,意大利、法国、英国和美国相继开发成功了用碳纤维管和铝合金接头粘接成车架的碳纤维自行车。其车架重量较铬钼钢车架轻,强度、刚度却比铬钼钢车架高,因此一经研制成功,便被用作专门的比赛用车。曾获得男子自行车公路赛冠军的德国著名车手乌尔里希的“坐骑”就是用碳纤维增强复合材料作的支架,质量仅7.5 kg。目前一般使用树脂传递模塑工艺(RTM)来批量生产自行车。
高尔夫球杆1972年美国Shakespear公司用长丝缠绕法制成高尔夫球杆,同年,美国的G.Brewer采用CFRP(碳纤维增强复合材料)制成球杆,此后,为了适应球的飞行距离和方向稳定性要求,在重量、尺寸和负荷等方面加以改善。现在高档的高尔夫球杆,采用碳纤维复合材料,密度小,强度高,弹性高,耐冲击,使高尔夫球杆变得可多次重复使用,而且也使运动员可充分发挥挥杆打球的力量和技术。钓鱼竿碳纤维增强复合材料制成的钓鱼竿比GFRP制品或竹竿都要轻得多,使其在撒竿时消耗能量少,而且撤竿距比后者远20%左右。
CFRP所制的钓鱼竿长而好,刚性大,钓鱼竿在弯曲之后能迅速复原,使其传递诱饵的感觉较为灵敏。现在已有商品销售,用碳纤维增强塑料还可以制成渔具的卷铀,其重量不超过140克,但它的疲劳强度高,耐摩擦,因而使用寿命长。网球拍目前世界上高、中档网球拍大多是用碳纤维复合材料制成的。
最早把碳纤维应用于网球拍的是1974年美国Chemold等公司。碳纤维复合材料可制大型网球拍,减震吸能性能好,设计自由。与其他材料相比,碳纤维应用于网球拍有以下优势:①可制造大型网球拍:与过去木制的相比,在同样重量下,球拍面积可增加1.5倍左右,网线的张力比普通拍提高2O%~45%。②减震阻尼性能好:碳纤维复合材料的减震阻尼性能出类拔萃,它不易起振,起振后也易停振。
③设计自由度大。羽毛球拍碳纤维增强复合材料刚成的羽毛球拍其特点是重量轻、刚性大、避免了木制品因其刚性不足而造成的断把现象,同时它还具有与上述网球拍一样的优点。滑雪板用碳纤维增强复合材料制造的滑雪板,其特点是刚性大,耐摩擦,在转弯、斜坡和越野赛中脚底用力较小。
用CFRF制造的滑雪杖在运动界也享有盛名。其特点是刚性大、重量轻,一般在150克左右。
碳纤维复合材料成型工艺
碳纤维复合材料虽然性能优异,但因为成本和批量化生产效率的问题,迟迟没有大规模应用。如何高速、高效大批量生产高质量、低成本的碳纤维复合材料,并提高材料利用率,是业界人士的共同目标。
碳纤维复合材料在发挥其轻质高强的基础上,会根据应用对象的差异采用不同的成型工艺,从而尽可能地发挥出碳纤维所具有的特殊性能。
成型工艺改进、优化的目的主要是提高效率和制品质量,从而降低整体的加工成本。 (1)手糊成型工艺--湿法铺层成型法; (2)喷射成型工艺; (3)树脂传递模塑成型技术(RTM技术); (4)袋压法(压力袋法)成型; (5)真空袋压成型; (6)热压罐成型技术; (7)液压釜法成型技术; (8)热膨胀模塑法成型技术; (9)夹层结构成型技术; (10)模压料生产工艺; (11)ZMC模压料注射技术; (12)模压成型工艺; (13)层合板生产技术; (14)卷制管成型技术; (15)纤维缠绕制品成型技术; (16)连续制板生产工艺; (17)浇铸成型技术; (18)拉挤成型工艺; (19)连续缠绕制管工艺; (20)编织复合材料制造技术; (21)热塑性片状模塑料制造技术及冷模冲压成型工艺; (22)注射成型工艺; (23)挤出成型工艺; (24)离心浇铸制管成型工艺; (25)其它成型技术。 随着碳纤维复合材料应用的深入和发展,碳纤维复合材料的成型方式也在不断地以新的形式出现,但是碳纤维复合材料的诸种成型工艺并非按照更新淘汰的方式存在的,在实际应用中,往往是多种工艺并存,实现不同条件、不同情况下的最好效应。相信在未来几年碳纤维复合材料成型速度会不断提高,或许一分钟内成型将不会是空谈。
在模具工作面上涂敷脱模剂、胶衣,将剪裁好的碳纤维预浸布铺设到模具工作面上,刷涂或喷涂树脂体系胶液,达到需要的厚度后,成型固化、脱模。在制备技术高度发达的今天,手糊工艺仍以工艺简便、投资低廉、适用面广等优势在石油化工容器、贮槽、汽车壳体等许多领域广泛应用。其缺点是质地疏松、密度低,制品强度不高,而且主要依赖于人工,质量不稳定,生产效率很低。
属于手糊工艺低压成型中的一类,使用短切纤维和树脂经过喷枪混合后,压缩空气喷洒在模具上,达到预定厚度后,再手工用橡胶锟按压,然后固化成型。为改进手糊成型而创造的一种半机械化成型工艺,在工作效率方面有一定程度的提高,但依然满足不了大批量生产,用以制造汽车车身、船身、浴缸、储罐的过渡层。 将逐层铺叠的预浸料放置于上下平板模之间加压加温固化,这种工艺可以直接继承木胶合板的生产方法和设备,并根据树脂的流变性能,进行改进与完善。
层压成型工艺主要用来生产各种规格、不同用途的复合材料板材。具有机械化和自动化程度高、产品质量稳定等特点,但是设备一次性投资大。
将经过树脂胶液浸渍的连续纤维或布带按一定规律缠绕到芯模上,然后固化、脱模成为复合材料制品的工艺。
碳纤维缠绕成型可充分发挥其高比强度、高比模量以及低密度的特点,制品结构单一,可用于制造圆柱体、球体及某些正曲率回转体或筒形碳纤维制品。
将浸渍树脂胶液的连续碳纤维丝束、带或布等,在牵引力的作用下,通过挤压模具成型、固化,连续不断地生产长度不限的型材。拉挤成型是复合材料成型工艺中的一种特殊工艺,其优点是生产过程可完全实现自动化控制,生产效率高。拉挤成型制品中纤维质量分数可高达80%,浸胶在张力下进行,能充分发挥增强材料的作用,产品强度高,其制成品纵、横向强度可任意调整,可以满足制品的不同力学性能要求。
该工艺适合于生产各种截面形状的型材,如工字型、角型、槽型、异型截面管材以及上述截面构成的组合截面型材,碳纤维复合芯导线主要采用这种成型工艺。 将液态单体合成为高分子聚合物,再从聚合物固化反应为复合材料的过程改为直接在模具中同时一次完成,既减少了工艺过程中的能量消耗,又缩短了模塑周期(只需约2分钟便可完成一件制品)。但这种工艺的应用,必须以精确的管道输送和计量以及温度压力自动控制为基础,属于高分子材料和近代高新科学技术的交叉范畴,目前的应用还不是很广。液态成型主要包括:RTM成型工艺、RFI成型、VARI成型。
树脂膜渗透(RFI)成型工艺示意图如下。主要优点是模具比RTM工艺模具简单,树脂沿厚度方向流动,更容易浸润纤维,没有预浸料,成本较低。但所得制品尺寸精度和表面质量不如RTM工艺,空隙含量较高,效率也稍微低一些,适合生产大平面或简单曲面的零件。
真空辅助成型工艺(VARI)的示意图如下,这种方法的优点是原材料利用率高,制件修整加工量少,不需要预浸料,成本较低,适用于常温或温度不高的大型壁板结构件生产。
但缺点和RFI成型工艺相似。 将单层预浸料按预定方向铺叠成的复合材料坯料放在热压罐内,在一定温度和压力下完成固化过程。热压罐是一种能承受和调控一定温度、压力范围的专用压力容器。
坯料被铺放在附有脱模剂的模具表面,然后依次用多孔防粘布(膜)、吸胶毡、透气毡覆盖,并密封于真空袋内,再放入热压罐中。加温固化前先将袋抽真空,除去空气和挥发物,然后按不同树脂的固化制度升温、加压、固化。固化制度的制定与执行是保证热压罐成型制件质量的关键。
该种成型工艺适用于制造飞机舱门、整流罩、机载雷达罩,支架、机翼、尾翼等产品。 这种方法使用较多,主要优点是: (1)制品尺寸稳定,重复性好; (2)纤维体积含量高(60%-65%); (3)力学性能可靠; (4)几乎可成型所有的材料; (5)可固化不同厚度的层合版; (6)可制造复杂曲面的零件。 但也存在以下不足: (1)制件大小受热压罐尺寸限制; (2)周期长、生产效率低; (3)耗能高,运行成本高。 简称VIP, 在模具上铺“干”碳纤维复合材料,然后铺真空袋,并抽出体系中的真空,在模具腔中形成一个负压,利用真空产生的压力把不饱和树脂通过预铺的管路压入纤维层中,让树脂浸润增强材料,最后充满整个模具,制品固化后,揭去真空袋材料,从模具上得到所需的制品。
该工艺在1950年就出现了专利记录,但在近几年才得到发展。在真空环境下树脂浸润碳纤,制品中产生的气泡极少,制品的强度更高、质量更轻,产品质量比较稳定,而且降低了树脂的损耗,仅用一面模具就可以得到两面光滑平整的制品,能较好地控制产品厚度。一般应用于船艇工业中的方向舵、雷达屏蔽罩,风电能源中的叶片、机舱罩,汽车工业中的各类车顶、挡风板、车厢等。
将碳纤维预浸料置于上下模之间,合模将模具置于液压成型台上,经过一定时间的高温高压使树脂固化后,取下碳纤维制品。这种成型技术具有高效、制件质量好、尺寸精度高、受环境影响小等优点,适用于批量化、强度高的复合材料制件的成型。但前期模具制造复杂,投入高,制件大小受压机尺寸的限制。
预浸料基材的成型工艺
另外片状模塑料(Sheet Molding Compound,SMC)模压成型工艺、长碳纤维增强热塑性材料(Long Carbon Fiber Reinforced Thermolplastics,CF-LFT)注塑成型工艺也得到了广泛应用。
SMC由树脂糊浸渍纤维或短切纤维毡,两面覆盖聚乙烯薄膜而制成的片状模压料,属于预浸毡料范围。SMC成型效 率高、产品的表面光洁度好、外形尺寸稳定性好,且成型周期短、成本低,适合大批量生产,适合生产截面变化不太大的薄壁制品,在GFRP汽车部件生产领域已得到广泛应用。目前,在车用CFRP成型工艺方面,SMC主要用于片状短切纤维复合材料的生产,由于纤维的非连续性,制品强度不高,且强度具有面内各向同性特点。
而碳纤维在树脂糊中的润湿性是SMC工艺面临的重要课题,通过对碳纤维进行必要的表面处理,并采用适当的润湿分散剂能够有效提高碳纤维在树脂糊中的润湿性和均匀性。碳纤维SMC也在汽车工业领域获得了不少应用。
SMC的参考工艺流程 模压工艺在欧美虽然已经有相当长的应用历史,但是在国内。
碳纤维复合材料的特点
碳纤维复合材料的特点如下:1、轻量化轻量化材料铝合金的密度为2.8g/cm3,而碳纤维复合材料的密度为1.5左右,只有其一半。但碳纤维复合材料的拉伸强度能够达到1.5GPa,高出铝合金三倍还多。
2、多功能性碳纤维复合材料经过多年的发展,结合了众多优异的物理性能、力学性能、生物性能以及化学性能。
例如防热性能、阻燃性能、屏蔽性能、吸波性能、半导性能、超导性能等。并且不同的先进复合材料的组成不同,其功能性存在一定的差别。3、经济效益最大化碳纤维复合材料在设备上的应用,能够减少产品部件数量。由于复杂部件的连接不需要进行铆接、焊接,因此对连接部件的需求量降低。
有效地减少了装配材料成本、装配和连接时间,进一步降低了成本。4、结构整体性碳纤维复合材料可以加工成整体部件,即采用碳纤维复合材料部件能够替代若干金属部件。某些特殊轮廓和表面复杂的部件,用金属制造的可行性较低,采用碳纤维复合材料能够很好地满足实际需求。
5、可设计性采用树脂与碳纤维复合结构方式,能够获得不同形状、不同性能的复合材料。例如选择合适的材料、铺层程序,能够加工出膨胀系数为零的碳纤维复合材料制品。并且碳纤维复合材料的尺寸,稳定性优于传统金属材料。
碳纤维复合材料
您好!不知道您提问的具体是什么内容哦。简单介绍一下复合材料。
复合材料简单来说就是塑料粒子,供塑料零部件注塑生产用的基础化工原料,而复合材料是对基础化学材料进行再次加工,达到性能更优异。
如更耐磨,改变颜色,材料韧性,耐腐蚀性等要求。碳纤维塑料粒子是一种目前塑料粒子行业内较高水平的复合材料,市面上能做的企业不多,因为对机台设备及研发水平要求非常高。介绍一下碳纤维材料的应用:1.碳纳米管CNT材料,已不再仅仅出现在论文中,CNT材料已应用于静电喷涂和EMI的场合,如汽车翼子板,后视镜等等。2.碳纤维CF的应用更加广泛·PA6-CF应用于天窗部件,PP-CF用于电池组件,PA-CF应用于无人机和自行车部件,3D打印的PA-CF管件。
3.EleHPC PA-CF系列应用于自行车和油田部件,CFRTP材料管材。
伯乐塑机的CIML机是什么
CIML(Carbon-Fiber Products Intelligent Moulding Line) 碳纤产品智能成型线,是伯乐塑机为汽车轻量化量身打造的技术解决方案。CIML是长碳纤维增强热塑性复合材料在线直接生产制品的一种工艺技术,属于LFT-D技术范畴,它区别于长纤维粒料注塑工艺的关键因素是造粒步骤被省去了,在材料的选择上也更加灵活。
在CIML技术中,不仅纤维的含量更多和长度更长,而且连其基体聚合物也可以直接调整到最终部件的要求。
通过添加剂的用量多少可以改变和影响制品的机械性能和特殊应用材料的特性,如热稳定性、着色性、紫外稳定性以及纤维与基体的粘结特性等,这也意味着每一种特殊应用都可以通过CIML获得其独特的材料配方。CIML典型的工艺过程是聚合物基体颗粒和添加剂被输送到计量喂料单元中,该单元根据制品的机械性能要求确保适度的混合。经混合后的原料进入配混单元塑化,连续碳纤维粗纱在配混单元后端加入,由螺杆切割粗纱,并把它们柔和地混合到塑化的聚合物当中,然后直接送入注塑机模具中成型。CIML工艺主要有以下优点和特点:优点: 成本低。
由于是直接一步法生产,因此由CIML生产的大型结构部件比两步法生产的注塑部件的成本低20%~50%; 制品的综合性能优异。CIML成型制品比长纤粒料注塑成型的纤维长很多,因此其抗冲击性能明显比长纤粒料注塑成型高得多,因为CIML低的剪切力改善了纤维被剪断的可能性。另外,大量的研究表明,CIML注塑的生产效率比采用粒料注塑成型的生产效率高,对于成型周期超过1min的部件,用CIML设备在30s内就能完成。
特点: 减少了半成品的制造成本及物流成本 显著降低能耗 可在线回收废料 聚合物只有一次加热过程 快速调整材料及配方 保留纤维长度更长 优越的流动性能、均匀的纤维分布 CIML技术的发展趋势复合材料技术涉及材料、设计和工艺3个方面,这3个方面相互影响,缺一不可。碳纤维复合材料经过40多年的研究、应用和发展,已经取得了长足的进步,但是在汽车领域的应用还远远滞后于航空航天和其他工业领域。在复合材料成型工艺方面,现有的工艺原则上均可用于汽车工业,但是除考虑制件的力学性能外,工艺的成型效率和制造成本同样影响着复合材料在汽车上的应用。
汽车生产具有量大、面广的特点,碳纤维复合材料用于生产汽车零部件宜采用低成本的快速成型方法。除了成本因素外,复合材料的回收利用是制约碳纤维复合材料在汽车上大规模应用的一个很大瓶颈,与金属材料不同,报废后的复合材料制件无论是采用粉碎、焚烧还是掩埋处理都会对环境产生影响。只有解决了回收利用问题,才能为复合材料在汽车领域的大规模应用扫清障碍。
CIML技术为碳纤维材料在汽车的应用提供了一种解决方案,该技术结合碳纤维材料配混和注塑成型加工为一体,采用热塑性塑料为基体,生产废料可在线回收利用,效率高,成本低,环境友好,实现碳纤维汽车零部件大批量生产。世界上LFT材料的市场需求量保持快速增长,从欧洲近年来的发展情况分析,LFT-D的发展情况和发展潜力远远大于长纤维粒料注塑工艺,是未来汽车轻量化发展趋势的主力军,这将为推动CIML工艺及设备的发展提供强大的推动力。相对而言,我国在LFT材料方面的开发较晚,产量也很低。国内LFT-D从目前来看,LFT-D产品在国内尚未普及,CIML技术的发展更晚,现在还处于起始阶段。
随着近年来汽车工业的飞速发展及LFT材料在汽车中应用越来越广泛,业内对LFT-D认知度的不断提高,以及汽车行业节能减排要求的日益严苛,将为LFT材料成型技术及设备的发展提供巨大的市场空间,开发新的LFT材料成型工艺及设备将会受到更多的关注,可以预见CIML发展将会更迅速,尤其在乘用车轻量化过程中替代金属结构件、半结构件中将发挥重要的作用。
温馨提示:内容为网友见解,仅供参考
无其他回答

热塑性复合材料的性能是什么
热塑性复合材料的性能是什么具有高刚性、高热变形温度、低收缩率、低挠曲性、尺寸稳定以及低密度、低价格等特点。热塑性树脂基复合材料是20世纪80年代发展起来的,主要有长纤维增强粒料(LFP)、连续纤维增强预浸带(MITT)和玻璃纤维毡增强型热塑性复合材料(GMT)。根据使用要求不同,树脂基体主要有PP、PE、PA、PBT、PEI...

tpc是什么材料
TPC,全称热塑性复合材料,是一种具有热塑性的材料。它的主要特点是可重复加热软化、冷却固化,并在此过程中保持其原有的物理特性和化学性质。这种材料在加工过程中具有良好的流动性,易于塑造和加工。二、TPC的主要特点 1. 热塑性:TPC可以反复加热和冷却,不会改变其原有性能。2. 良好的加工性能:由...

tpx是什么材料
TPX是一种新型的热塑性复合材料,具有优异的物理机械性能和加工性能。它是由多种高分子材料经过特定的工艺复合而成,保留了各组分材料的优点,同时改善了其缺点,表现出良好的强度、刚性、耐磨性和耐腐蚀性。TPX材料的特点 1. 良好的热塑性:TPX材料在加热时可以软化,易于加工成型,冷却后又可以固化,保...

热塑性复合材料的性能
云母复合材料具有高刚性、高热变形温度、低收缩率、低挠曲性、尺寸稳定以及低密度、低价格等特点,利用云母\/聚丙烯复合材料可制作汽车仪表盘、前灯保护圈、挡板罩、车门护栏、电机风扇、百叶窗等部件,利用该材料的阻尼性可制作音响零件,利用其屏蔽性可制作蓄电池箱等。我国的热塑性树脂基复合材料的研究开始...

连续纤维增强热塑性复合材料(CFRT)的特点
连续纤维增强热塑性复合材料(CFRT)展现出显著的性能优势,其特点主要体现在以下几个方面:首先,CFRT展现出极高的强度和抗冲击性能,其力学性能显著优于传统材料。这种特性使得CFRT在众多领域,如航空航天、汽车工业、医疗器械和运动器材等,具有广泛的应用前景。其次,CFRT具有出色的耐温性和抗湿性,能够在...

et是什么材料
ET材料的定义 ET材料,全称为玻璃纤维增强热塑性复合材料,是一种将玻璃纤维与热塑性基体结合形成的复合材料。这种材料结合了玻璃纤维的高强度、耐高温特性与热塑性材料的可塑性和加工便利性。ET材料的特性 1. 高强度与刚性:ET材料中的玻璃纤维提供了很高的强度和刚性,使得材料在承受外力时表现出优异的...

什么是fpr材料
FPR材料,即纤维增强型热塑性复合材料,是一种新型的工程材料。其主要特点在于其纤维增强和热塑性的双重属性。一、纤维增强属性 FPR材料中的纤维增强部分,通常采用玻璃纤维、碳纤维等。这些高性能纤维具有极高的强度和刚度,能够有效提升材料的整体力学性能。通过合理设计纤维的排列和分布,可以使得FPR材料在...

热塑性复合材料中的增强材料
热塑性复合材料是由热塑性聚合物作为基体,通过与连续或不连续纤维(如碳纤维、玻璃纤维、芳纶纤维等)的复合而成,具有高强度、高耐热性和良好的耐腐蚀性能。这种复合材料的主要形式包括长纤维增强粒料(LFT)、连续纤维增强预浸带(MT)和玻璃纤维增强型热塑性复合材料(CMT)。热塑性树脂基复合材料在航空...

热塑性木塑复合材料特点介绍
新型环保材料——热塑性木塑复合材料,主要以农作物废弃物如木屑、竹屑、稻壳等天然木质纤维为原料,结合塑料填充改性和高分子界面化学等高科技手段,经过特殊工艺处理,形成了一种可循环利用的优质仿木材型材。这一成果是我国自主研发的专利技术。该材料具有卓越的性能:首先,它具备出色的物理和力学特性,能...

evc是什么材料
EVC是一种热塑性复合材料。以下是关于EVC材料的 EVC材料的定义 EVC,全称热塑性三元乙丙橡胶复合材料,是一种由多种材料经过特定工艺复合而成的热塑性材料。它结合了橡胶的弹性和塑料的加工性能,具有优异的耐候性、耐化学腐蚀性和良好的绝缘性能。EVC材料的组成 EVC材料主要由三元乙丙橡胶作为基础材料,并...

相似回答
大家正在搜