求解几何题时作辅助线的技巧

如题所述

第1个回答  2012-04-01
添辅助线的规律
(一)添辅助线的目的:
解证几何问题的基本思路就是要利用已知几何条件求得所求几何关系。这往往需要将已知条件与所求条件集中到一个或两个几何关系十分明确的简单的几何图形之中。如一个三角形(特别是直角三角形、等腰三角形),一个平行四边形(特别是矩形、菱形、正方形),一个圆,或两个全等三角形,两个相似三角形之中。这种思路可称为条件集中法。
为了达到条件集中的目标,我们需要将远离的、分散的已知条件和所求条件,通过连线、作线、平移、翻转、旋转等方法来补全或构造一个三角形、一个平行四边形、一个圆、或两个全等三角形、两个相似三角形。以便于运用这些图形的几何关系(性质定理)解题,这就需要添加辅助线。
添加什么样的辅助线,总由以下三方面决定:
⑴由所求决定:问什么,先要作什么。
⑵由已知决定:已知什么,作出什么,并为充分运用已知条件提供的性质定理添加辅助线。
⑶由条件集中的需要决定:为补全或构造几何关系十分明确的一个三角形、一个平行四边形、一个圆,或两个全等三角形、两个相似三角形而添加辅助线。
(二)添辅助线的规律:
(1)三角形中:
①等腰Δ:常连底边上的中线或高或顶角的平分线(构造两个全等的直角Δ,或便于运用等腰Δ三线合一的性质。如图1)
②直角Δ斜边上有中点:连中线(构造两个等腰Δ,或便于运用直角Δ斜边上的中线的特殊性质。如图2)

③斜Δ有中点或中线:连中线(构造两个等底同高的等积Δ。如图3); 或自左右两顶点分别作中线的垂线(构造两个全等直角三角形。如图4); 或连中位线、或过一中点作另一边的平行线(构造两个相似比为1:2的相似Δ,或便于运用Δ中位线定理。如图5、6);或延长中位线或中线的一倍(构造两个全等Δ或补全为一个平行四边形。如图7、8)。或延长中线的1/3(构造两个全等Δ或补全为一个平行四边形。如图9)。

④有角平分线:过其上某一交点作角两边的垂线(构造两全等的直角Δ。如图10)或一边或两边的平行线(构造一个或两个等腰Δ或一菱形。如图11)。
⑤有角平分线:在此角的一边上自顶点取一段等于另一边并作相关连线(构造两个全等Δ。如图12、13)
⑥有角平分线遇垂线:常延长垂线(构造等腰Δ。如图14)。

(二)梯形:
①延长两腰交于一点(构造两相似Δ。如图15),
②由小底的一端作一腰的平行线(构造一集中有两腰及上下两底差的Δ和一平行四边形。如图16)。

③由小底的两端作大底的垂线(构造两直角Δ和一矩形。如图17)。
④有对角线时:由小底的一端作另一对角线的平行线(构造一集中有两对角线及上下两底和的Δ和一平行四边形。如图18)。
⑤连小底一端与另一腰中点并与大腰的延长线相交(构造两全等Δ及一与梯形等高等积的Δ。如图19)。
⑥过一腰的中点作另一腰的平行线(构造两全等Δ及与梯形等积的平行四边形。如图20)。
⑦过小底的中点分别作两腰的平行线(构造一集中有两腰及上下两底差的Δ和两个平行四边形。如图21)。

(三)圆:
①有弦:连过弦端点的半径,连垂直于弦的直径或弦心距(构造直角Δ,便于运用垂径定理、勾股定理、锐角三角函数解题);或作过弦一端点的切线及相关的圆心角、圆周角(便于运用弦切角定理。如图22)。
②有直径及垂直直径的弦或半弦,连结弦与直径的端点(构造三个相似的直角Δ,便于运用直角Δ的性质及射影定理。如图23)。

③有圆内接四边形:连对角线(构造较多相等的圆周角。如图24);或延长四边形的某一边(构造与内对角相等的外角。如图25)。

④圆外有切线:连过切点的半径或直径(构造垂直关系);或作过切点的弦及相关的圆心角、圆周角(便于运用弦切角定理。如图26)。
⑤圆外有两条相交切线:连过切点的半径,并作切线交点与圆心的连线(构造两全等的直角三角形);或作过交点和加以的割线(便于运用切线割线定理);或连结两切点(构造一等腰Δ、三对全等的直角Δ、被切线交点与圆心的连线垂直平分的弦,便于运用等腰Δ、直角Δ、全等Δ以及射影定理。如图27)。

⑥有相交弦或相交于圆外的割线\切线:连结不同弦的端点或不同割线在圆上的交点(构造相似Δ,便于运用比例线段及Δ外角定理。如图28、29、30)。

⑦两圆相交:作连心线、公共弦,甚至两圆心到公共弦两端点的连线(构造两
等腰Δ、补全一筝形,便于运用连心线垂直平分公共弦的定理。如图31)。
⑧两圆外切:作连心线及内、外公切线、连切点、连半径(构造一集中有两条弦及外公切线长
的直角Δ、一集中有两圆半径、半径之和及外公切线长的直角梯形。如图32)。
⑨两圆内切:作连心线及外公切线(便于运用连心线与公切线的垂直关系。如图33)。
⑩两圆外离:作连心线及个公切线或内公切线,并过小圆圆心作公切线的平行线(构造一集中连心线长、公切线长、两圆半径差或和的直角Δ。如图34、35)。
第2个回答  2012-04-01
我就用我们老师说的告诉你吧
先考虑是否可做高 若是梯形,可考虑平移对角线 三角形:做角平分线,中线,中位线
平行四边形:连接对角线等 若是综合题,也可作平行线或旋转等
第3个回答  2012-04-15
看到一道题 首先要想到是哪一类型 再根据条件想一下 毕竟方法是靠积累的 别人再怎么说也不会有好大影响 不会做还是不会做 比如说圆 它的规律是连接半径 做垂线段之类的

求解几何题时作辅助线的技巧
⑨两圆内切:作连心线及外公切线(便于运用连心线与公切线的垂直关系。如图33)。⑩两圆外离:作连心线及个公切线或内公切线,并过小圆圆心作公切线的平行线(构造一集中连心线长、公切线长、两圆半径差或和的直角Δ。如图34、35)。

求初中数学几何题做辅助线技巧
初中数学几何证明题辅助线一般画成虚线,画辅助线的原则(技巧)如下:1、揭示图形中隐含的性质:当条件与结论间的逻辑关系不明朗时,通过添加适当的辅助线,将条件中隐含的有关图形的性质充分揭示出来。以便取得过渡性的推论,达到推导出结论的目的;2、聚拢集中原则:通过添置适当的辅助线,将图形中分散...

初二数学几何辅助线解题技巧
初二数学几何辅助线解题技巧如下:三角形图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。截取构全等AB\/\/CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。分析:在此题中可在长线段BC上截取BF=AB...

八年级几何辅助线的做法技巧
4)截长补短法,具体做法是在某条线段上截取一条线段与特定的线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的相关性质加以说明。这种方法适合于证明线段的和,差,倍,分等类的题目。5)等面积法:利用三角形(或其他图形)面积不同求法来解决线段之间的问题。6)遇到线段的...

求初中数学几何题做辅助线技巧
1 按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。2 按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补...

请大家谈谈“初中平面几何辅助线做法”,要全面,不要口诀。
1、两圆相交连公共弦。2 两圆相切,过切点引公切线。3、见直径想直角 4、遇切线问题,连结过切点的半径是常用辅助线 5、解决有关弦的问题时,常常作弦心距。以下口诀,仅供参考:作辅助线的方法和技巧 题中有角平分线,可向两边作垂线。线段垂直平分线,可向两端把线连。三角形中两中点,连结则...

如何做辅助线
回答:人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。 要证线段倍与半,延...

几何证明题辅助线的技巧和方法
以下是辅助线的相关介绍:辅助线是指在原图基础上所作的具有极大价值的直线或者线段,多用于几何学中解答疑难几何图形问题。方法1:有关三角敬瞎形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。方法2:含有平分线的...

数学几何辅助线怎么作
然而,若要给几何辅助线的作法制定一些原则,大致可以遵循以下两点。首先,辅助线应当尽可能地贴近题目的条件和结论。这意味着在解题过程中,应优先考虑与题目条件或结论有直接联系的线段或点,通过这些元素构建出有助于解决问题的辅助图形。例如,在证明三角形相似时,可以考虑通过构造共线点或共线段来揭示...

不会在数学几何中作辅助线怎么办
方法:我觉得,辅助线的方法就是欲擒故纵,根据定理来添加与定理有关的辅助线。或者,如果你的年级还低,才初二,你可以试着学习初三的知识,你的思路会伸展一些。当然,也许你是高中,因为高中还要学习立体几何,总之,立体几何和平面几何的辅助线方法相同:欲擒故纵。但是呢,高中解决几何题的方法就...

相似回答