1 /1*2=1/1-1/2,,12*3=1/2-1/3,1/3*4=1/3-1/4.…,1/n*(n+1)=1/n-1/n+1 根据上述规律可以归纳1/1993*20091

1/n*(n+1)=

2009-1993=16,所以所问的结果就是1/16×(1/1993-1/2009)即相差多少就除以多少。1/[n×(n+y)]=1/y×[1/n-1/(n+y)]
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-04-11
1/1993*2009
=(1/1993-1/2009)/(2009-1993)
=(1/1993-1/2009)/16
第2个回答  2012-04-11
1/n*(n+1)=1/n-1/(n+1)

...1\/n+1 根据上述规律可以归纳1\/1993*20091
2009-1993=16,所以所问的结果就是1\/16×(1\/1993-1\/2009)即相差多少就除以多少。1\/[n×(n+y)]=1\/y×[1\/n-1\/(n+y)]

观察下面的变形规律:1\/1×2=1-1\/2;1\/2×3=1\/2-1\/3;解答下列问题:1\/9...
答案是:1\/n-1\/(n+1),这是根据通分后的两数相减的算法的,它的前面其实我觉得少了括号,应该是1\/(n*(n+1))才对,像1\/1*2,应该是1\/(1*2)才对

1\/2=1\/1×2=1\/1-1\/2 1\/6=1\/2×3=1\/2-1\/3 1\/12=1\/3×4=1\/3-1\/4...
2.利用规律计算 1\/2+1\/6+1\/12···+1\/(n-1)n +1\/(n+1)n =1-1\/2+1\/2-1\/3+1\/3-1\/4+……+1\/(n-1)-1\/n+1\/n-1\/(n+1)=1-1\/(n+1)=n\/(n+1)3.利用规律解方程 1\/(x-4)(x-3) +1\/(x-3)(x-2) +1\/(x-2)(x-1) +1\/(x-1)x +1\/(x+1)x ...

...1\/6=1\/2×3=1\/2-1\/3 1\/12=1\/3×4=1\/3-1\/4 1\/20=1\/4×5=1\/4-1\/5...
解: (1) 规律: 1\/m*(m+1) = 1\/m - 1\/(m+1) ; m = 1,2,3,... 证明: 右式 = 1\/m - 1\/(m+1) = (m+1)\/m*(m=1) - m\/m*(m+1) = 1\/m*(m+1) = 左式;此规律实际上说的是:如果一个分数分子是1,分母可以写成两个连续整数的乘积m与m+1,那么这个分数就...

求数列1\/1x2,1\/2x3,1\/3x4,1\/4x5...的前n项和---
第n项为1\/n(n+1)由于1\/1x2=1-1\/2 1\/2x3=(1\/2)-(1\/3)1\/3x4=(1\/3)-(1\/4)……1\/n(n+1)=(1\/n)-(1\/n+1)所以前n项的和为1-(1\/n+1)

已知1-1\/2=1\/2,1\/2-1\/3=1\/6,1\/3-1\/4=1\/12,...根据这些等式解答下列各...
(1) 1\/1*2+1\/2*3+1\/3*4+1\/4*5+1\/5*6 =(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+(1\/4-1\/5)+(1\/5-1\/6)=1-1\/6 =5\/6 (2)1\/1*2+1\/2*3+1\/3*4+...+1\/n(n+1)=(1-1\/2)+(1\/2-1\/3)+……+[1\/n-1\/(n+1)=1-1\/(n+1)=n\/(n+1)(3)因为1\/1...

...f(1)=1\/2,f(2)=1\/6,f(3)=1\/12,利用以上规律计算
f(1)=1\/1*2=1-1\/2 f(2)=1\/2*3=1\/2-1\/3 f(3)=1\/3*4=1\/3-1\/4 所以原式=1-1\/2+1\/2-1\/3+1\/3-1\/4+……+1\/2009-1\/2010 =1-1\/2010 =2009\/2010

我们知道一乘二分之一=一减二分之一二乘三分之一=二分之一减三分之一...
1*1\/2=1-1\/2 2*1\/3=1\/2-1\/3 3*1\/4=1\/3-1\/4 ...答案 过程 4*1\/5=1\/4-1*5 2008*1\/2009=1\/2008-1\/2009 n*1\/(n+1)=1\/n-1\/(n+1)可化简:1*1\/2+2*1\/3+...+1004*1\/1005=?用公式,1-1\/2+1\/2-1\/3+...+1\/1004-1\/1005=1004\/1005哈哈 刚才粗心了 ...

C语言编程:求1\/1×2+1\/2×3+1\/3×4+……1\/n×(n+1)
估计大多数人都小学的时候都做过这个。其实1\/n*(n+1)=1\/n-1\/(n+1);所以这个函数可以这样写。float fun(float n){ return 1-1\/(n+1);} 主函数中 int main(){ float n;printf("%f\\n",fun(n));return 0;}

计算1\/1×2+1\/2x3+1\/3×4+...+1\/n(n+1)
1\/2*3 = (1\/2)-(1\/3) <--- 假设 x=2 且自然的 y=3还有 1\/3*4 = (1\/3)-(1\/4) <--- 假设 x=3 且自然的 y=4还有 1\/4*5 = (1\/4)-(1\/5) <--- 假设 x=4 且自然的 y=5如此类推以后...最后1项 = 1\/n*(n+1) = (1\/n)-[1\/(n+1)] <--- 假设 x=...

相似回答
大家正在搜